МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
Кафедра «Финансы и кредит»
КОНТРОЛЬНАЯ РАБОТА
по дисциплине «Финансовая математика»
Севастополь
2007
Цель контрольной работы:
- изучить основные методы проведения финансовых расчетов на уровне предприятий, банковских учреждений, страховых организаций;
- научиться рассчитывать параметры финансовых операций;
- научиться проводить сравнительный анализ вариантов осуществления финансовых сделок.
Вариант №5
Задача 1
Вывести формулу для определения современной ценности р-срочной финансовой ренты с начислением процентов m раз в год.
Сумма членов геометрической прогрессии (P) определяется по формуле
,
где b1 - первый член геометрической прогрессии;
q - знаменатель прогрессии;
n - число членов прогрессии.
Если платежи производятся не один, а m раз в году, то размер платежа равен R/p. Члены ренты образуют ряд
.
Данный ряд представляет собой геометрическую прогрессию со знаменателем (1+j/m)-m/p, первым членом прогрессии и числом членов прогрессии nmp. Подставив данные в вышеуказанную формулу получаем сумму дисконтированных платежей или современную стоимость (Р) p-срочной ренты:
Приведя последнее выражение к общему знаменателю, и упростив его, получим формулу для расчета современной ценности р-срочной финансовой ренты с начислением процентов m раз в год:
Задача 2
Клиент внес в банк 14 000 д.ед. на срок с 14 февраля по 23 июля. На вклады «до востребования» сроком больше месяца банк начисляет 24 % простых годовых. Определите наращенную сумму при расчете по: а) точным процентам с точным числом дней; б) банковскому методу; в) обыкновенным процентам с приближенным числом дней. Год не високосный.
Решение:
Дано: Р = 14 000
срок c 14.02 по 23.07
i = 24 % (0,24)
Найти: S -?
Наращенная сумма вычисляется по формуле (декурсивный метод начисления простых процентов):
S = P + I,
где S – наращенная сумма или сумма задолженности, подлежащая погашению по окончании кредитного/депозитного договора, д.ед.;
Р – первоначальная сумма капитала или размер предоставленного кредита/депозита, д.ед.;
I –сумма процентов, начисленных за весь срок операции, д.ед.
Сумма начисленных процентов вычисляется по формуле
I = P * i * n,
где n - срок операции или период действия кредитного договора в годах;
i – простая процентная ставка для конверсионного периода, равного одному году, %.
Формула наращения по простым процентам
S = P + P*i*n = P*(1+i*n).
В случае, если n не равно целому количеству лет применяют формулу
S = P*(1+i*t/k),
где t – срок финансовой операции;
k – временная база (12 мес., 4 квартала, 360 /365 дней).
а) Определим наращенную сумму при расчете по точным процентам с точным числом дней в течение финансовой операции. Это Английская практика расчетов. В нашей задаче временная база k = 365 (год не високосный).
Посчитаем точное число дней в сроке с 14.02 (включая) по 23.07 (не включая).
t = 15 + 31 + 30 + 31 + 30 + 22 = 159 (дней)
Тогда S = 14 000 * (1+ 0,24 * 159 / 365) = 15 463,67 (д.ед.)
б) Определим наращенную сумму при расчете по банковскому методу, или обыкновенные % с точным числом дней в течение финансовой операции. ............