Введение
LabVIEW (Laboratory Virtual Instrument Engineering Workbench) позволяет разрабатывать прикладное программное обеспечение для организации взаимодействия с измерительной и управляющей аппаратурой, сбора, обработки и отображения информации и результатов расчетов, а также моделирования как отдельных объектов, так и автоматизированных систем в целом. Разработчиком LabVIEW является американская компания National Instruments.
В отличие от текстовых языков, таких как C, Pascal и др., где программы составляются в виде строк текста, в LabVIEW программы создаются в виде графических диаграмм, подобных обычным блок-схемам. Иногда можно создать приложение, вообще не прикасаясь к клавиатуре компьютера.
LabVIEW является открытой системой программирования и имеет встроенную поддержку всех применяемых в настоящее время программных интерфейсов, таких как Win32 DLL, COM.NET, DDE, сетевых протоколов на базе IP, DataSocket и др. В состав LabVIEW входят библиотеки управления различными аппаратными средствами и интерфейсами, такими как PCI, CompactPCI/PXI, VME, VXI, GPIB (КОП), PLC, VISA, системами технического зрения и др. Программные продукты, созданные с использованием LabVIEW, могут быть дополнены фрагментами, азработанными на традиционных языках программирования, например C/С++, Pascal, Basic, FORTRAN. И наоборот можно использовать модули, разработанные в LabVIEW в проектах, создаваемых в других системах программирования. Таким образом, LabVIEW позволяет разрабатывать практически любые приложения, взаимодействующие с любыми видами аппаратных средств, поддерживаемых операционной системой компьютера.
1. Генерирование коррелированных случайных процессов
N-мерная плотность распределения вероятности wN(x1, x2, …xN) связывает каждый отсчет случайной последовательности со всеми остальными отсчетами. Такое описание очень сложно и на практике используются более простые модели случайного процесса с зависимыми отсчетами. Наиболее известны две: марковская модель и спектрально-корреляционная модель. В марковской модели каждый отсчет случайного процесса зависит только от одного предыдущего (марковский процесс первого порядка). Для него N-мерная плотность распределения вероятности
wN(x1, x2, … xN) = w(x1)w(x2/x1) w(x3/,x2)*…* w(xN/ xN - 1) = w(x1)∏w(xi/xi – 1).
Марковский процесс не является чисто теоретическим допущением, таким будет процесс на выходе интегрирующей цепи при подаче на ее вход белого шума.
Спектрально-корреляционная модель оперирует с двумерной плотностью распределения вероятности w(x1, x2), связывающей отсчеты случайного процесса, взятые в разные моменты времени x1 = x(t1) и x2 = x(t2). Если изменять t1 и t2, то можно исследовать попарную связь всех отсчетов между собой и, в принципе, последовательно определить все связи, описываемые N-мерным законом распределения. В спектрально-корреляционной модели для описания этой связи используется корреляционный (второй смешанный центральный) момент:
Стационарные случайные процессы характеризуются неизменностью характеристик во времени, и для таких процессов корреляционный момент не зависит от выбора начального момента времени t1, а определяется только величиной интервала τ = t2 – t1.
Зависимость корреляционного момента от временного интервала τ между отсчетами называется корреляционной функцией R(τ) случайного процесса. ............