Тема: «Геометрия Лобачевского»
Выполнила: Зайнулина Г.
Г.Бишкек 2010
Н.И. Лобачевский и его геометрия
До начала XIX столетия ни одна из попыток доказательства V постулата не увенчалась успехом. Таким образом, проблема V постулата оставалась неразрешимой. И только в начале XIX в. были получены результаты, которые привели к решению этой проблемы. Основная заслуга в этом принадлежит знаменитому русскому ученому Н.И. Лобачевскому. Николай Иванович Лобачевский родился 2 декабря 1792 г. в Нижнем Новгороде (ныне г. Горький). Он окончил гимназию при Казанском университете, а затем и Казанский университет, после чего был оставлен там преподавателем. С 1816 г. Н.И. Лобачевский — профессор того же университета, с 1827 по 1846 г. — ректор университета. С 1846 по 1855 г.— помощник попечителя Казанского учебного округа. Н.И. Лобачевский скончался 24 февраля 1856 г. В течение первых лет преподавательской деятельности в Казанском университете Н.И. Лобачевский настойчиво пытался доказать V постулат. Неудачи этих попыток и попыток его предшественников привели его к выводу, что V постулат не может быть выведен из остальных постулатов геометрии. Чтобы это доказать, Н.И. Лобачевский построил логическую систему, в которой, сохраняя основные посылки Евклида, он отвергает V постулат и заменяет его противоположным допущением. Он пришел к выводу, что эта логическая схема представляет собой новую геометрию, которая может быть развита так же успешно, как и геометрия Евклида. 7 февраля (по старому стилю) 1826 г. Н. И. Лобачевский представил физико-математическому факультету Казанского университета доклад по теории параллельных под названием «Рассуждения о принципах геометрии». В 1829 г. в «Ученых записках Казанского университета» он поместил статью «О началах геометрии». Это была первая опубликованная работа по новой геометрии. В последующие годы Лобачевский издал еще ряд сочинений по геометрии. В этих сочинениях он первым отчетливо сформулировал и обосновал утверждение о том, что V постулат Евклида нельзя вывести из остальных аксиом геометрии. Лобачевский развивает свою геометрию на плоскости и в пространстве до тех же пределов, до каких была развита Евклидова геометрия, включая и формулы тригонометрии. Эту новую геометрию он назвал «воображаемой» (впоследствии ее стали называть геометрией Лобачевского или гиперболической геометрией). Открывая все новые и новые факты, Лобачевский не встретил в своей геометрии каких-либо логических противоречий. Исследования, проделанные им, привели к убеждению, что его логическая схема свободна от логических противоречий. Желая показать, что его геометрия никогда не приведет к противоречию, Лобачевский дает ее аналитическое исследование и решает проблему непротиворечивости своей геометрии вполне удовлетворительно для того времени. Лобачевский показал, что его геометрия может быть с пользой приложена в математическом анализе: он вычислил много интегралов, которые до него не поддавались вычислению. Примерно в одно время с Н.И. Лобачевским теорией параллельных прямых занимались великий немецкий математик Гаусс (1777—1855) и выдающийся венгерский математик Я. Бояи (1802— 1860). Но Гаусс не опубликовал ничего по теории параллельных, боясь, что его не поймут. После смерти Гаусса в его бумагах были найдены наброски отдельных наиболее простых теорем гиперболической геометрии. ............