А.Н. Чистяков и С.Н. Лисин (Ленинградский технологический институт)
В настоящее время каменноугольную смолу перерабатывают на коксохимических предприятиях в трубчатых печах с одно- или двухколонным агрегатом. Ее нагревание осуществляют в радиантной части до 400°С при давлении, не превышающем 500 кПа.
В последнее время внимание специалистов привлекает процесс переработки смолы под повышенным давлением (Пат. 3835024 (США), 1974) [1]. Понятно, что изменение технологического режима должно приводить к изменению не только физико-химических свойств смолы, но и химического состава. Однако сведения об экспериментах в этом направлении переработки каменноугольной смолы отсутствуют.
В данной статье приведены результаты исследования химического состава смолы, обезвоженной в промышленной трубчатой печи и подвергнутой термообработке при 350°С в течение 30 мин при давлениях инертного газа (гелия) от 500 до 2000 кПа. Характеристика исходной обезвоженной смолы следующая:
Плотность, г/см3 1, 94 Содержание, % (по массе): фенолов 1, 15 оснований 1, 28 нафталина 11, 28 веществ, нерастворимых в толуоле 8, 60 Зольность, % (по массе) 0, 11
Схема лабораторной установки приведена на рис. 1.
Рисунок 1 - Схема лабораторной установки термической обработки смолы под давлением:
1 - редуктор; 2 - распределитель газа; 3 - запорный вентиль; 4 - гильза; 5 - термостат.
Гильзы (рис. 2) из нержавеющей стали имели следующие размеры: внутренний диаметр 16 мм, наружный диаметр 30 мм, высота 170 мм.
Устройство гильзы: 1 - карман для термопары; 2 - накидная гайка; 3 - шайба; 4 - капиляр; 5 - прокладка; 6 - корпус;
Пробу смолы (~30 г) загружали в гильзы, закрывали накидными гайками с шайбами, которые соединялись с распредителем газа капиллярами (диам. 2X1 мм) из нержавеющей стали. Перед опытом истему для удаления воздуха продували 1—2 мин гелием (Р = 200 кПа) при неплотно закрученных гайках. Затем, не снижая подачи гелия, гайки плотно закручивали и при помощи алюминиевых прокладок добивались полной герметизации. После проверки на герметичность в системе устанавливали заданное давление и одну из гильз (или все пять) помещали в воздушный термостат с постоянной и регулируемой (с точностью ±0, 5°С) температурой.
Термостат работал по принципу воздушных термостатов-газовых хроматографов и позволял поддерживать температуру в пределах 80—500°С.
Исходную смолу и термообработанную разделяли на фракции с помощью растворителей по известным методикам. Химический состав фракций смолы определяли на хроматографе «Цвет-104» с пламенно-ионизационным детектором и программированием температуры. Условия хроматографирования: колонка длина 2 м, диаметр 3 мм; неподвижная фаза хезасорб AW-HMDS с 5 % (по массе) SЕ-30; температура испарителя 300 °С; программирование температуры от 50 до 300 °С со скоростью 4 град/мин; скорость газа-носителя (гелия) 100 мл/мин, водорода 100 мл/мин, воздуха 1 л/мин.
Идентификацию компонентов проводили по известным временам удерживания [2, 3]. Для этой же цели использовали метод введения эталонных веществ с дальнейшим анализом исследуемой смолы на хроматографе ОС-1С фирмы «Шимадзу» при следующих условиях: колонка длина 3, 5 м, диаметр 3 мм; неподвижная фаза хезасорб AW-HMDS с 5 % (по массе) SЕ-30; температура испарителя и детектора соответственно 350 и и 330°С; линейное программирование температуры колонок от 50 до 320 °С со скоростью 2 град/мин; скорость газа-носителя (гелия) 120 мл/мин, водорода 90 мл/мин, воздуха 1, 7 л/мин.
Сравнение хроматограмм, полученных на разных приборах при использовании одного и того же наполнителя колонок, давало возможность достаточно точно идентифицировать компоненты, При этом применяли единую нумерацию пиков, а так как качество разделения на разных приборах различалось, то совместившиеся пики обозначали несколькими номерами. ............