MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Кривые, заданные в полярных координатах

Название:Кривые, заданные в полярных координатах
Просмотров:394
Раздел:Математика
Ссылка:Скачать(1582 KB)
Описание: Кривые, заданные в полярных координатах Р.Л. Ткачук Вологда Введение Тема «Полярная система координат» позволяет познакомить учащихся с крас

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Кривые, заданные в полярных координатах

Р.Л. Ткачук

Вологда


Введение

Тема «Полярная система координат» позволяет познакомить учащихся с красивейшими результатами математической науки.

Полярная система координат на плоскости определяется заданием точки O (полюс), луча Ох (полярная ось) и единичного отрезка т. Кроме того, должен быть указан поворот луча Ох, называемый положительным. Пусть это будет поворот в направлении против движения часовой стрелки. Повороты луча, совершаемые в направлении, противоположном положительному, будем называть отрицательными.

Пусть М — произвольная точка плоскости, не совпадающая с полюсом. Обозначим через  длину отрезка ОМ, а через — величину угла, образованного лучами Ох и ОМ. Числа  и такие, что р>0 и 0  ф < 2π, именуют полярными координатами точки М. Число называют первой полярной координатой, или полярным радиусом, число — второй полярной координатой, или полярным углом (рис. 1) Если точка М совпадает с полюсом, то  = 0, а полярный утол  считаем равным нулю. Заметим, что при заданных нами условиях  > 0, 0 ≤ < 2π, полярные координаты любой точки определяются однозначно.

Введение таких координат очень естественно, ведь местонахождение любой точки на земной поверхности для неподвижного наблюдателя удобно определять с помощью расстояния от наблюдателя до этой точки и направления к точке от наблюдателя (в этом случае точка, в которой находится наблюдатель, служит полюсом).

Школьникам можно напомнить, что в повести Р.Л.Стивенсона «Остров сокровищ» описано, как старый пират Флинт определил местоположение закопанного клада: «Десять футов к северу от высокого дерева на склоне Подзорной Трубы» (рис. 2).

Построение кривых, заданных полярными уравнениями, имеет некоторые специфические особенности, которые мы проиллюстрируем на примерах. Как известно, математики Древней Индии заменяли доказательства теорем геометрическим чертежом, сопровождая его короткой подписью: «Смотри!». Мы пользовались тем же принципом, заменив долгие разъяснения рисунками, из которых видны все свойства кривых.

В дальнейшем, при построении кривых мы позволим углу  принимать любые неотрицательные значения, выделяя на рисунках жирной линией фрагменты кривых, получающиеся при ограниче-нии 0 ≤ < 2π.


Алгебраические спирали

Сначала рассмотрим так называемые алгебраические спирали, т.е. кривые, полярные уравнения которых являются алгебраическими относительно  и  и имеют вид F(, ) = 0,  ≥0,  ≥ 0. Если перейти к прямоугольной системе координат, то эти уравнения уже не будут алгебраическими относительно х и у. Кривые, задаваемые такими уравнениями, принято называть трансцендентными.

Достаточно громоздкие декартовы уравнения упрощаются при переходе к полярной системе координат. Зависимость между полярными и декартовыми координатами весьма проста.

Пусть полюс O совпадает с началом декартовой системы координат, полярная ось совмещена с положительным направлением оси Ох; М(х; у) — произвольная точка декартовой плоскости. Легко убедиться, что

 

И обратно:

x= 

Спираль Архимеда

 

 = .

Поместим точку на секундную стрелку часов и будем перемешать точку вдоль секундной стрелки с постоянной скоростью, не обращая внимания на равномерное движение стрелки часов по кругу. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Проектування радіолокаційного координатора
Просмотров:628
Описание: Міністерство освіти і науки України Національний університет «Львівська політехніка» Кафедра РЕПС Курсова робота З дисципліни: Проектування радіолокаційних, радіонавігаційних си

Название:Расчёт спиральной антенны круговой поляризации
Просмотров:357
Описание: Белорусский государственный университет информатики и радиоэлектроники Кафедра «Антенны и устройства СВЧ»   КУРСОВАЯ РАБОТА по дисциплине «Антенны и устройства СВЧ» Тема: Расчёт

Название:Кривые, заданные в полярных координатах
Просмотров:394
Описание: Кривые, заданные в полярных координатах Р.Л. Ткачук Вологда Введение Тема «Полярная система координат» позволяет познакомить учащихся с крас

Название:Обчислення координат курсору миші при переміщенні
Просмотров:326
Описание: Міністерство освіти і науки України Житомирський державний технологічний університет Лабораторна робота №6 з курсу «Системне програмування» на тему: «Миша»

Название:Проект спирального теплообменника
Просмотров:252
Описание: Курсовой проект На тему: ''Проект спирального теплообменника"  Могилев 2005 Введение Виноградный сок изготавливают натуральный, неподслащенный прозрачный. Сырь

 
     

Вечно с вами © MaterStudiorum.ru