MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Математические уравнения и функции

Название:Математические уравнения и функции
Просмотров:82
Раздел:Математика
Ссылка:Скачать(84 KB)
Описание: Варивант №2   Задание 1 Дан треугольник ABC, где А(-3,2), В(3,-1), С(0,3). Найти: 1.         Длину стороны АВ; 2.         Внутренний угол А с точностью до градуса; 3.    

Часть полного текста документа:

Варивант №2

 

Задание 1

Дан треугольник ABC, где А(-3,2), В(3,-1), С(0,3). Найти:

1.         Длину стороны АВ;

2.         Внутренний угол А с точностью до градуса;

3.         Уравнение и длину высоты, опущенной из вершины С;

4.         Точку пересечения высот;

5.         Уравнение медианы, опущенной из вершины С;

6.         Систему неравенств, определяющих треугольник АВС;

7.         Сделать чертеж;

Решение:

1.         Найдем координаты вектора АВ:

Длина стороны АВ равна:

2.         Угол А будем искать как угол между векторами АВ и АС(-3,1)

Тогда

3.         Прямая СК перпендикулярна АВ проходит через точку С(0,3) и имеет нормалью вектор .

По формуле получим уравнение высоты:

Сокращаем на 3 получим уравнение высоты:

4.         Координаты основания медианы будут:

;

Уравнение медианы найдем, пользуясь данной формулой, как уранение прямой, проходящей через 2 точки: С и М

Так как знаменатель левой части равен нулю, то уравнение медианы будет иметь такой вид х=0

5.         Известно что высоты треугольника пересекаются в одной точке Р. Уравнение высоты СК найдено, выведем аналогично высоту BD проходящую через точку В перпендикулярно вектору


Координаты точки Р найдем как решение системы уравнений:

х=11 у=23

6.         Длину высоты hc будем ее искать как расстояние от точки С до прямой АВ. Эта прямая проходит через точку А и имеет направляющий вектор .

Теперь воспользовавшись формулой

Подставляя в нее координаты точки С(0,3)


Задание 2

Даны векторы Доказать, что образуют базис четырехмерного пространства, и найти координаты вектора «в» в этом базисе.

Решение:

1.         Докажем, что подсистема линейно независима:

Из четвертого уравнения имеем , что , тогда из первого, второго и третьего следует, что . Линейная независимость доказана.

Докажем, что векторы можно представить в виде линейных комбинации векторов .

Очевидно,


Найдем представление  через .

Из четвертого уравнения находим и подставляем в первые три

Получили , что данная система векторов не может называться базисом!

Задание 3

Найти производные функций:


Задание 4.

Исследовать функцию и построить ее график


1.         Область определения:

, то есть

2. Кривая  имеет вертикальную ассимптоту х=-1, так как

Находим наклонные асимптоты. а то означает, что есть вертикальная асимптота у=0.

3.         Функция общего вида, так как  и

4.         Функция периодичностью не обладает

5.         Находим производную функции

Получаем 3 критические точки х=-1 х=1, и х=5.

Результаты исследования на монотонность и экстремумы оформляется в виде таблицы

х

1

5

y’ - - 0 + 0 - y убывает убывыает

0

min

возрастает 0,074 убывает

6.         Находим вторую производную функции

Получаем критические точки х=-1; х=0,22; х=6,11

Результаты исследований на выпуклость и точки перегиба оформляем в виде таблицы.

х

0.22

6.11

y” - + 0 + 0 - y выпукла вогнута

0,335

перегиб

вогнута 0,072 выпукла

7.         Находим точки пересечения графика с осями координат Ох и Оу

 получаем точку (0;1); получаем точку (1;0)

8.         При х=-2, у=-9, при х=-5, у=-0,56, при х=-10, у=-0,166

9.         Строим график в соответствии с результатами исследований:


Задание 5

Найти неопределенные интегралы и проверить их дифференцированием.

а) ; б) ; в) ; г)

Решение:

а) сделаем подстановку sin3x=t, тогда dt=cos3x dx, следовательно:

Проверка:

б) сделаем подстановку

Проверка:


в) Воспользуемся способом интегрирования по частям

Проверка:

г) воспользуемся способом интегрирования рациональных дробей


Проверка:

Задание 6

 

Вычислить площадь фигуры, ограниченной графиками функций:

Решение:

находим координаты точек пересечения заданных графиков функций:

приравнивая правые части, получаем квадратное уравнение

корни этого квадратного уравнения

следовательно : , и значит координаты точек пересечения А(0,7) и В(5,2). ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения
Просмотров:119
Описание:   Курсовая работа на тему: «Разработка технологии сборки и монтажа ячейки трёхкоординатного цифрового преобразователя перемещения» Введение Рассматриваемая ячейка в

Название:Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ)
Просмотров:117
Описание: Обозначение осей координат и направлений перемещений исполнительных органов на схемах станков с числовым программным управлением (ЧПУ) Систему координат станка, выбранную в соответствии с рекомендациями ISO

Название:Система координат канви
Просмотров:92
Описание: Зміст Вступ Розділ 1. Теоретична частина 1.1 Компонент Image і деякі його властивості 1.2 Вивід зображень за допомогою пікселів 1.3 Збереження конфігурації в файлах .ini Розділ 2. Практична частина 2.1 Код гри

Название:Социологический анализ семьи в единстве структурных и динамических координат
Просмотров:61
Описание: Содержание 1. Социологический анализ семьи в единстве структурных и динамических координат. Семья как социальный институт и как социальная группа 2. Типология семейных структур и их основные разновидности.

Название:Расчетное задание по внедрению в эксплуатацию морского судна
Просмотров:185
Описание: 1. ВНЕШНИЕ УСЛОВИЯ ЭКСПЛУАТАЦИИ СУДОВ НА ЗАДАННОМ НАПРАВЛЕНИИ   К внешним условиям эксплуатации судов отнесем: район плавания судов, порты захода, транспортную характеристику грузов. 1.1.  Район плав

 
     

Вечно с вами © MaterStudiorum.ru