Часть полного текста документа: Глава ? Математическое моделирование системных элементов Выдающийся итальянский физик и астроном, один из основателей точного естес- твознания, Галилео Галилей (1564 - 1642гг.) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической фи- лософии Иммануил Кант (1742 - 1804гг.) утверждал, что "Во всякой науке столько ис- тины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практи- чески уже в наше время, немецкий математик и логик Давид Гильберт (1862 - 1943гг.) констатировал: "Математика - основа всего точного естествознания". Приведенные высказывания великих ученых, без дополнительных комментариев, дают полное представление о роли и значении математики как в научно-теоретической, так и предметно-практической деятельности специалистов. 1.1. Три этапа математизации знаний Современная методология науки выделяет три этапа математизации знаний: ма- тематическая обработка эмпирических (экспериментальных) данных, моделирование и относительно полные математические теории. Первый этап - это математическая, чаще всего именно количественная обработка эмпирических (экспериментальных) данных. Это этап выявления и выделения чисто фе- номенологических функциональных взаимосвязей (корреляций) между входными сигна- лами (входами ) и выходными реакциями (откликами ) на уровне целостного объекта (явления, процесса), которые наблюдают в экспериментах с объектами-оригиналами . Данный этап математизации имеет место во всякой науке и может быть определён как этап первичной обработки её эмпирического материала. Второй этап математизации знаний определим как модельный. На этом этапе не-которые объекты выделяются (рассматриваются) в качестве основных, базовых (фун-даментальных), а свойства (атрибуты), характеристики и параметры других объектов исследования объясняются и выводятся исходя из значений, определяемых первыми (назовем их оригиналами). Второй этап математизации характеризуется ломкой старых теоретических концепций, многочисленными попытками ввести новые, более глубокие и фундаментальные. Таким образом, на "модельном" этапе математизации, т.е. этапе математического моделирования, осуществляется попытка теоретического воспроизве-дения, "теоретической реконструкции" некоторого интересующего исследователя объек-та-оригинала в форме другого объекта - математической модели. Третий этап - это этап относительно полной математической теории данного уровня организации материи в данной или рассматриваемой предметной области. Тре- тий этап предполагает существование логически полной системы понятий и аксиомати- ки. Математическая теория даёт методологию и язык, пригодные для описания явлений, процессов и систем различного назначения и природы. Она даёт возможность преодоле- вать узость мышления, порождаемую специализацией. 1.2. Математическое моделирование и модель Математическое моделирование - это теоретико-экспериментальный метод позна- вательно-созидательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов - матема- тических моделей. Под математической моделью принято понимать совокупность соотношений (уравнений, неравенств, логических условий, операторов и т.п.), определяющих характе- ристики состояний объекта моделирования, а через них и выходные значения - реакции , в зависимости от параметров объекта-оригинала , входных воздей- ствий , начальных и граничных условий, а также времени. Математическая модель, как правило, учитывает лишь те свойства (атрибуты) объекта-оригинала , которые отражают, определяют и представляют интерес с точки зрения целей и задач конкретного исследования. ............ |