MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Экономико-математическое моделирование -> Математичне програмування

Название:Математичне програмування
Просмотров:185
Раздел:Экономико-математическое моделирование
Ссылка:Скачать(129 KB)
Описание: Завдання 1 Побудувати математичну модель задачі. Меблева фабрика виготовляє столи, стільці, тумби і книжкові шафи використовуючи дошки двох видів, причому фабрика має 500 м2дошок першого виду і 1000 м2дошок друг

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Завдання 1

Побудувати математичну модель задачі.

Меблева фабрика виготовляє столи, стільці, тумби і книжкові шафи використовуючи дошки двох видів, причому фабрика має 500 м2дошок першого виду і 1000 м2дошок другого виду. Задані також трудові ресурси в кількості 800 людино-годин. У таблиці наведені нормативи витрат кожного виду ресурсів на виготовлення одного виду і прибуток від реалізації одиниці виробу.

Ресурси Витрати на один виріб Запас сировини, м2 Столи Стільці Тумби Книжкові шафи Дошки І виду, м2 5 1 9 12 500 Дошки ІІ виду, м2 2 3 4 1 1000 Трудові ресурси, люд.год. 3 2 5 10 800 Прибуток від реалізації одного виробу, грн.од. 12 5 15 10

Визначити асортимент, що максимізує прибуток.

Розв’язок

Складаємо математичну модель задачі. Позначимо через х1кількість виробів 1-ї моделі, що виготовляє фірма за деяким планом, а через х2 кількість виробів 2-ї моделі та через та через х3і х4кількість виробів 3-ї і 4-ї моделі відповідно. Тоді прибуток, отриманий фабрикою від реалізації цих виробів, складає

∫ = 12х1+5х2 + 15х3+ 10х4.

Витрати сировини на виготовлення такої кількості виробів складають відповідно:

А =5х1+1х2 + 9х3+ 12х4,

В =2х1+3х2 + 4х3+ 1х4,

С =3х1+2х2 + 5х3+ 10х4,

Оскільки запаси сировини обмежені, то повинні виконуватись нерівності:

5х1+1х2 + 9х3+ 12х4≤ 500

2х1+3х2 + 4х3+ 1х4≤ 1000

3х1+2х2 + 5х3+ 10х4≤ 800

Оскільки, кількість виробів є величина невід'ємна, то додатково повинні виконуватись ще нерівності: х1> 0, х2> 0, х3> 0, х4> 0.

Таким чином, приходимо до математичної моделі (задачі лінійного програмування):

Знайти х1 , х2, х3 та х4 такі, що функція ∫ = 12х1+5х2 + 15х3+ 10х4 досягає максимуму при системі обмежень:

Розв'язуємо задачу лінійного програмування симплексним методом. Введемо балансні змінні х5 ≥ 0, х6≥ 0, х7≥ 0. Їх величина поки що невідома, але така, що перетворює відповідну нерівність у точну рівність. Після цього, задача лінійного програмування набуде вигляду: ∫ = 12х1+5х2 + 15х3+ 10х4 → max при обмеженнях

де х1,...,х7>0

Оскільки завдання вирішується на максимум, то ведучий стовпець вибирають по максимальному негативному кількістю та індексного рядку. Всі перетворення проводять до тих пір, поки не вийдуть в індексному рядку позитивні елементи.

Переходимо до основного алгоритму симплекс-методу.

План Базис В x1 x2 x3 x4 x5 x6 x7 min 1 x5 500 5 1 9 12 1 0 0 55.56 x6 1000 2 3 4 1 0 1 0 250 x7 800 3 2 5 10 0 0 1 160 Індексний рядок F(X1) 0 -12 -5 -15 -10 0 0 0 0

Оскільки, в індексному рядку знаходяться негативні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х3, оскільки значення коефіцієнта за модулем найбільше.

План Базис В x1 x2 x3 x4 x5 x6 x7 min 2 x3 55.56 0.56 0.11 1 1.33 0.11 0 0 100 x6 777.78 -0.22 2.56 0 -4.33 -0.44 1 0 0 x7 522.22 0.22 1.44 0 3.33 -0.56 0 1 2350 Індексний рядок F(X2) 833.33 -3.67 -3.33 0 10 1.67 0 0 0

Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х1.

План Базис В x1 x2 x3 x4 x5 x6 x7 min 3 x1 100 1 0.2 1.8 2.4 0.2 0 0 500 x6 800 0 2.6 0.4 -3.8 -0.4 1 0 307.69 x7 500 0 1.4 -0.4 2.8 -0.6 0 1 357.14 Індексний рядок F(X3) 1200 0 -2.6 6.6 18.8 2.4 0 0 0

Даний план, знову не оптимальний, тому будуємо знову нову симплексну таблицю. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Оптимальний вибір і зміна ціни. Крива індивідуального попиту
Просмотров:136
Описание: Зміст Вступ 1. Криві "доход-споживання". Криві та закони Енгеля 2. Оптимальний вибір і зміна ціни. Крива індивідуального попиту 3. Ефекти доходу та заміни Висновок Список використаних джерел

Название:Функція корисності. Оптимальний план споживання
Просмотров:237
Описание: КОНТРОЛЬНА РОБОТА з економічної теорії Функція корисності. Оптимальний план споживання 1. Функція корисності. Оптимальний план споживання Присвоюючи ті чи інші ранги альтерна

Название:Створення електронної таблиці "Відомість нарахування премії за 1 квартал 2010 року"
Просмотров:262
Описание: Курсова робота з дисципліни "Інформатика та КТ" на тему "СТВОРЕННЯ ЕЛЕКРОННОЇ ТАБЛИЦІ" "Відомість нарахування премії за 1 квартал 2010 року" Зміст Вступ 1. Форма

Название:Окисно-відновні процеси в статевих клітинах бугаїв і корів, способи оцінювання якості та підвищення запліднюваності
Просмотров:207
Описание: Львівський національний університет ветеринарної медицини та біотехнологій імені С. З. Ґжицького Остапів Дмитро Дмитрович УДК: 636.2:631.147.611-013.11 ОКИСНО-ВІДНОВНІ ПРОЦЕСИ В СТАТЕВИХ КЛІТИНАХ БУГАЇВ

 
     

Вечно с вами © MaterStudiorum.ru