Часть полного текста документа:Мода, медиана, квартили. С.В. Усатиков, кандидат физ-мат наук, доцент; С.П. Грушевский, кандидат физ-мат наук, доцент; М.М. Кириченко, кандидат социологических наук Очень часто исследователю приходится иметь дело с достаточно длинным вариационным рядом или с целой серией таковых. Это могут быть экономические показатели, результаты тестирования различных групп, медико-физиологические замеры и т.п. При их анализе зачастую недостаточно выделения средних арифметических и дисперсий. В подобных случаях хорошую службу могут сослужить приемы выделения моды и медианы, а также перцентильный анализ. Суть данного метода заключается в том, что объектом анализа являются не частоты сами по себе, а их распределение относительно жестко структурированных вариант. Значимость метода заключается не в том, что при его помощи мы анализируем конкретный вариационый ряд. Понятия моды и медианы являются важной составляющей частью так называемого нормального распределения, являющегося основой для расчетов выборки, доказательства или опровержения выдвигаемых гипотез. Мода. Мода представляет из себя наиболее часто встречающиеся значения распределения. При этом следует помнить о различиях модального значения для дисперсных и непрерывных характеристик. В первом случае модой является варианта с наибольшей частотой - скажем, максимальный процент выборов в вопросе с номинальной шкалой. Если же речь идет об интервальном ряде, представляющем собой непрерывную характеристику признака, то модальным значением будет являться группа с наибольшим числом наблюдений. Дискретный ряд (номи-нальная шкала). Каждая варианта ряда - отдельное явление. В группе учащихся, указавших на стремление к получению высшего образования, выделены желаемые профессии (Сумма№ 100%, т.к. имелась возможность нескольких выборов) Непрерывный ряд (шкала отношений). Каждая варианта ряда - сгруппированные значения одного класса явлений. Результаты испытаний по тесту, в котром минимально возможное значение - 0 баллов, максимальное - 100 1. врач 15% 1. до 10 баллов 0 чел. 2. инженер-строитель 18% 2. 11-20 баллов 0 чел. 3. агроном 11% 3. 21-30 баллов 4 чел. 4. военнослужащий 9% 4. 31-40 баллов 11 чел. 5. банкир 4% 5. 41-50 баллов 23 чел. 6. менеджер 9% 6. 51-60 баллов 34 чел. 7. педагог 13% 7. 61-70 баллов 19 чел 8. переводчик 15% 8. 71-80 баллов 14 чел. 9. бухгалтер-экономист 31,2% 9. 81-90 баллов 7 чел 10. 91-100 баллов 1 чел. (Модальные значения выделены жирным шрифтом) При всей практической полезности понятия моды, необходимо отметить, что ей присущ ряд недостатков. Она не может служить четким выражением центральной тенденции. Максимальная частота может преврсходить остальные на порядок (например, 60% в одном пункте при 3-5% в 9 остальных). Кроме того, возможно встретить ряд, в котором имеется 2 или более численно значимых частоты при малых значениях остальных позиций. В этом случае подобные ряды относятся к бимодальным или полимодальным распределениям( см. рис.1 и 2). Рис.1 Бимодальное распределение Рис.2 Полимодальное распределение Помимо этого при работе со шкалой отношений мода будет не только "кочевать" из одной группы в другую в зависимости от размера интервала (это вполне естественно), но при этом изменится, зачастую весьма значительно, ее величина. Эти недостатки моды обуславливают то обстоятельство, что в анализе эта измерительная процедура практически не используется. ............ |