ОТДЕЛ ОБРАЗОВАНИЯ ГОМЕЛЬСКОГО ГОРОДСКОГО
ИСПОЛНИТЕЛЬНОГО КОМИТЕТА
Государственное учреждение образования
«Средняя общеобразовательная школа №22 г. Гомеля»
Учебно-исследовательская работа
«Объем фигур вращения правильных многогранников»
Ученика 11 «А» класса
ГУО СОШ№22 г. Гомеля
Гончарова Дмитрия Евгеньевича
Научный руководитель –
Горский Сергей Михайлович,
учитель математики Государственного
учреждения образования
СОШ №22 г. Гомеля
Гомель, 2009
Содержание
Введение. Фигуры вращения правильных многогранников
1. Виды поверхностей в фигурах вращения
2. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения
3. Классификация задач на вращение многогранников
4. Решение задач на вращение многогранников
Заключение
Список литературы
Введение
Каждое геометрическое тело имеет поверхность, и если она состоит из плоских многоугольников, то такое тело называется многогранником, а составляющие его поверхность многоугольники – гранями. Границы между гранями называются ребрами, а точки, в которых ребра соединяются, — вершинами многогранника.
Таким образом, многогранники – это тела, ограниченные плоскими многоугольниками. Они окружают нас повсюду: ведь самая популярная форма современного здания, телевизора, мебели – параллелепипед. Например, рассмотрим
o Использование теории правильных многогранников в архитектуре
o Национальная библиотека в Минске (Авторы проекта здания – Михаил Виноградов и Виктор Крамаренко.)
o Перевернутая пирамида – использованная при построении здании современного искусства в Каракасе (Архитектор Оскар Нимейер).
o Звездчатые многогранники – создание на их основе проектов административного здания в Италии и национальной библиотеки в Дамаске (В.А. Сомов, А.М. Бреславец, В.Н. Гамаюнов).
Объектом исследования в данной исследовательской работе являются фигуры вращения правильных многогранников. Предмет исследования – объем тел вращения.
Работая над темой, мне удалось собрать удивительно интересный материал о правильных многогранниках. Оказалось, что даже тайна мироздания связана с этими пятью правильными многогранниками.
В процессе исследования были построены развертки и модели многогранников, сформулированы и решены задачи на вычисление объемов фигур вращения.
Фигуры вращения правильных многогранников
Поверхностью вращения называют фигуру, которая получается вращением какой-либо линии.
Если для какой-то фигуры существует прямая, любой поворот вокруг которой совмещает фигуру саму с собой, то эту фигуру называют фигурой вращения. При этом прямая, любой поворот вокруг которой отображает фигуру саму на себя, называется осью вращения.
Телом вращения называют всякое геометрическое тело, которое является фигурой вращения.
Тела вращения характеризуются линией, которая при своем вращении относительно оси образует поверхность тела вращения. Эту линию для данного тела вращения называю образующей.
1. Виды поверхностей в фигурах вращения
Образующими поверхностей вращения в задачах представленных в данной работе служат ребра многогранника, т.е. ............