MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Общее доказательство гипотезы Биля, великой теоремы Ферма и теоремы Пифагора

Название:Общее доказательство гипотезы Биля, великой теоремы Ферма и теоремы Пифагора
Просмотров:295
Раздел:Математика
Ссылка:Скачать(59 KB)
Описание: Файл: MENTOR © Н.М. Козий, 2007 Авторские права защищены свидетельствами Украины № 23145 и № 27312 ОБЩЕЕ ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ БИЛЯ, ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА И ТЕОРЕМЫ ПИФАГОРА ДОКАЗАТЕЛЬСТВ

Часть полного текста документа:

Файл: MENTOR

© Н.М. Козий, 2007

Авторские права защищены

свидетельствами Украины

№ 23145 и № 27312

ОБЩЕЕ ДОКАЗАТЕЛЬСТВО

ГИПОТЕЗЫ БИЛЯ, ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

И ТЕОРЕМЫ ПИФАГОРА


ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ БИЛЯ

Гипотеза Биля формулируется следующим образом: неопределенное уравнение

Аx +Вy= Сz/1/

не имеет решения в целых положительных числах А, В, С, x, y и z при условии, что x, y и z больше 2.

Суть гипотезы Биля не изменится, если уравнение /1/ запишем следующим образом:

Аx = Сz - Вy/2/

Уравнение /2/ рассматриваем как параметрическое уравнение с параметром A и переменными B и С.

Уравнение /2/ запишем в следующем виде:

Аx = (С0,5z) 2 -(В0,5y) 2 /3/

Обозначим:

В0,5y =V /4/

С0,5z =U /5/

Отсюда:

Вy =V2 /6/

Сz =U2 /7/

В = /8/

С = /9/

Тогда из уравнений /2/, /6/ и /7/ следует:

Аx = Сz -Вy =U2-V2 /10/

Уравнение /10/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:

Аx = (U-V) ∙(U+V) /11/

Для доказательства гипотезы Биля используем метод замены переменных. Обозначим:

U-V=X /12/

Из уравнения /12/ имеем:

U=V+X /13/

Из уравнений /11/, /12/ и /13/ имеем:

Аx = X· (V+X+V) =X(2V+X) =2VХ+X2 /14/

Из уравнения /14/ имеем:

Аx - X2=2VХ /15/

Отсюда:

V= /16/

Из уравнений /13/ и /16/ имеем:

U=  /17/

Из уравнений /8/, /9/, /16/ и /17/ имеем:

B = /18/

C = /19/

Из уравнений / 18/ и /19/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа Аx на число X, т.е. число X должно быть одним из множителей, входящих в состав множителей числа Аx. Другими словами, число Аx должно быть, например, равно:

Ax = (abc) x, /20/

где: a, b, c - простые или составные целые положительные числа.

При этом должно быть, например:

X=сm; X2=c2m. /21/

В любым случае должно соблюдаться соотношение: 2m ≤ x.

Из уравнений / 18/ и /19/ следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел A и X: оба числа должны быть четными или оба нечетными.

Из уравнений / 18/, /19/ и /20/ следует:

В= /22/

C= /23/

Обозначим:

P =  /24/

Q =  /25/

Тогда:

B =  /26/

С = /27/

Из уравнений /24/ и /25/ имеем:

Q =  /28/

Таким образом, из уравнений /27/ и /28/ следует:


С = /29/

Из анализа уравнений /26/ и /29/ следует, что поскольку разность между числами Q и P равна всего лишь:

Q - P = P + 1 - P = 1, /30/

то, по меньшей мере, одно из чисел В или С является дробным числом.

Допустим, что число В - целое число.

ПРИМЕР: c=5; P = 612 = 3721; y = 4; m=2; 2m=4.

По формуле /25/ имеем:

B =  =

Тогда:

при z=3: С = =  - дробное число.

при z=4: С = =  - дробное число.

при z=5: С = =  - дробное число.

при z=6: С = =  - дробное число.

Очевидно, что если

(dm) 2 = d2m, то (dm + 1) 2 ≠ e2m,

где: d - целое число;

e - целое число.


Таким образом, если допустить, что В - целое число, то С - дробное число.

Следовательно, гипотеза Биля не имеет решения в целых положительных числах.

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Если в уравнении /1/ гипотезы Биля принять, что показатели степени равны между собой, т.е. x = y = z = n, то оно преобразуется в уравнение великой теоремы Ферма:

Аn +Вn= Сn /31/

Тогда уравнения /2/, /6/ - /11/, /16/ - /20/ примут вид:

Аn = Сn - Вn/32/

Вn =V2 /33/

Сn =U2 /34/

В = /35/

С = /36/

Аn = Сn - Вn = U2-V2 /37/

Аn = (U-V) ∙(U+V) /38/

V= /39/

U=  /40/

B = /41/

C = /42/

Пусть: An = (abc) n, /43/

где: a, b, c - простые или составные целые положительные числа.

При этом должно быть, например:

X=сm; X2=c2m. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Методические аспекты построения и анализа электродинамических уравнений Максвелла
Просмотров:643
Описание: В.В. Сидоренков, МГТУ им. Н.Э. Баумана На основе первичных фундаментальных соотношений электромагнетизма - закона Кулона взаимодействия неподвижных электрических точечных зарядов и закона сохранения электричес

Название:Система натуральных чисел. Принцип математической индукции. Теоремы математической индукции
Просмотров:645
Описание: п.1. Аксиоматическая система натуральных чисел. Определение. Системой натуральных чисел (системой Пеано) называется алгебра , где - бинарные операции, - унарная операция (функция «следования»), - выделенный элемент

Название:Избранные теоремы геометрии тетраэдра
Просмотров:331
Описание: Выпускная квалификационная работа   Избранные теоремы геометрии тетраэдра Специальность / направление подготовки Математика Специализация / профиль Математика - информатика С

Название:Доказательство теоремы о представлении дзета-функции Дедекинда
Просмотров:474
Описание: Содержание Введение Глава 1. Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле Глава 2. Вывод функционального уравнения дзета-функции Дедекинда Заключение Список используем

Название:Решение нелинейных уравнений
Просмотров:366
Описание:                           Лабораторная работа Решение нелинейных уравнений Задание N =07 М=2 Дано уравнение:          1. Найти все решения уравнения г

 
     

Вечно с вами © MaterStudiorum.ru