Файл: MENTOR
© Н.М. Козий, 2007
Авторские права защищены
свидетельствами Украины
№ 23145 и № 27312
ОБЩЕЕ ДОКАЗАТЕЛЬСТВО
ГИПОТЕЗЫ БИЛЯ, ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
И ТЕОРЕМЫ ПИФАГОРА
ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ БИЛЯ
Гипотеза Биля формулируется следующим образом: неопределенное уравнение
Аx +Вy= Сz/1/
не имеет решения в целых положительных числах А, В, С, x, y и z при условии, что x, y и z больше 2.
Суть гипотезы Биля не изменится, если уравнение /1/ запишем следующим образом:
Аx = Сz - Вy/2/
Уравнение /2/ рассматриваем как параметрическое уравнение с параметром A и переменными B и С.
Уравнение /2/ запишем в следующем виде:
Аx = (С0,5z) 2 -(В0,5y) 2 /3/
Обозначим:
В0,5y =V /4/
С0,5z =U /5/
Отсюда:
Вy =V2 /6/
Сz =U2 /7/
В = /8/
С = /9/
Тогда из уравнений /2/, /6/ и /7/ следует:
Аx = Сz -Вy =U2-V2 /10/
Уравнение /10/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:
Аx = (U-V) ∙(U+V) /11/
Для доказательства гипотезы Биля используем метод замены переменных. Обозначим:
U-V=X /12/
Из уравнения /12/ имеем:
U=V+X /13/
Из уравнений /11/, /12/ и /13/ имеем:
Аx = X· (V+X+V) =X(2V+X) =2VХ+X2 /14/
Из уравнения /14/ имеем:
Аx - X2=2VХ /15/
Отсюда:
V= /16/
Из уравнений /13/ и /16/ имеем:
U= /17/
Из уравнений /8/, /9/, /16/ и /17/ имеем:
B = /18/
C = /19/
Из уравнений / 18/ и /19/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа Аx на число X, т.е. число X должно быть одним из множителей, входящих в состав множителей числа Аx. Другими словами, число Аx должно быть, например, равно:
Ax = (abc) x, /20/
где: a, b, c - простые или составные целые положительные числа.
При этом должно быть, например:
X=сm; X2=c2m. /21/
В любым случае должно соблюдаться соотношение: 2m ≤ x.
Из уравнений / 18/ и /19/ следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел A и X: оба числа должны быть четными или оба нечетными.
Из уравнений / 18/, /19/ и /20/ следует:
В= /22/
C= /23/
Обозначим:
P = /24/
Q = /25/
Тогда:
B = /26/
С = /27/
Из уравнений /24/ и /25/ имеем:
Q = /28/
Таким образом, из уравнений /27/ и /28/ следует:
С = /29/
Из анализа уравнений /26/ и /29/ следует, что поскольку разность между числами Q и P равна всего лишь:
Q - P = P + 1 - P = 1, /30/
то, по меньшей мере, одно из чисел В или С является дробным числом.
Допустим, что число В - целое число.
ПРИМЕР: c=5; P = 612 = 3721; y = 4; m=2; 2m=4.
По формуле /25/ имеем:
B = =
Тогда:
при z=3: С = = - дробное число.
при z=4: С = = - дробное число.
при z=5: С = = - дробное число.
при z=6: С = = - дробное число.
Очевидно, что если
(dm) 2 = d2m, то (dm + 1) 2 ≠ e2m,
где: d - целое число;
e - целое число.
Таким образом, если допустить, что В - целое число, то С - дробное число.
Следовательно, гипотеза Биля не имеет решения в целых положительных числах.
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Если в уравнении /1/ гипотезы Биля принять, что показатели степени равны между собой, т.е. x = y = z = n, то оно преобразуется в уравнение великой теоремы Ферма:
Аn +Вn= Сn /31/
Тогда уравнения /2/, /6/ - /11/, /16/ - /20/ примут вид:
Аn = Сn - Вn/32/
Вn =V2 /33/
Сn =U2 /34/
В = /35/
С = /36/
Аn = Сn - Вn = U2-V2 /37/
Аn = (U-V) ∙(U+V) /38/
V= /39/
U= /40/
B = /41/
C = /42/
Пусть: An = (abc) n, /43/
где: a, b, c - простые или составные целые положительные числа.
При этом должно быть, например:
X=сm; X2=c2m. ............