Московский Автомобильно-Дорожный Институт
(Государственный Технический Университет)
Кафедра АСУ
Курсовая работа
по дисциплине: «Интеллектуальные системы»
Тема работы: «Общие принципы, характерные для нейросетей»
Москва 2000
Содержание
Введение Наиболее интересные нейросетевые архитектуры и их приложения Общие принципы, характерные для нейросетей Локальность и параллелизм вычислений Программирование: обучение, основанное на данных Универсальность обучающих алгоритмов Сферы применения нейросетей
Вывод
Список литературы
Введение
Традиционно нейрон описывался в терминах, заимствованных из нейрофизиологии. Согласно этим представлениям нейрон имеет один выход sj и несколько входов (синапсов), на которые поступают внешние воздействия хi (от рецепторов и от других нейронов).
Количество нейронов в мозге оценивается величиной 1010-1011. Типичные нейроны имеют тело клетки (сому), множество ветвящихся коротких отростков - дендритов и единственный длинный и тонкий отросток - аксон. На конце аксон также разветвляется и образует контакты с дендритами других нейронов - синапсы.
Рисунок 1. Схема межнейронного взаимодействия
Искусственные нейронные сети получили широкое распространение за последние 20 лет и позволили решать сложные задачи обработки данных, часто значительно превосходя точность других методов статистики и искусственного интеллекта, либо являясь единственно возможным методом решения отдельных задач. Нейросеть воспроизводит структуру и свойства нервной системы живых организмов: нейронная сеть состоит из большого числа простых вычислительных элементов (нейронов) и обладает более сложным поведением по сравнению с возможностями каждого отдельного нейрона. Нейросеть получает на входе набор входных сигналов и выдает соответствующий им ответ (выходные сигналы), являющийся решением задачи.
Искусственные нейронные сети применяются для задач классификации или кластеризации многомерных данных. Основная идея лежащая в основе нейронных сетей – это последовательное преобразование сигнала. Основой нейронной сети является кибернетический нейрон. Кибернетический нейрон состоит из 3 логических блоков: входы, функция преобразования и выход. На каждую комбинацию конкретных значений входов функция преобразования нейрона вырабатывает определённый сигнал (выход) (обычно скаляр), и передает его на входы другим нейронам сети. Подавая на входы некоторым нейронам сигналы извне, и отметив выходы части нейронов, как выходы сети в целом, мы получим систему, осуществляющую отображение.
Нейронные сети различаются функцией преобразования в нейронах, внутренней архитектурой связей между нейронами и методами настройки (обучения).
Основным плюсом нейросетей является возможность решения широкого класса задач алгоритмически не разрешимых или задач с нечёткими условиями. Доступность и возросшие вычислительные возможности современных компьютеров привели к широкому распространению программ, использующих принципы нейросетевой обработки данных, но исполняемых на последовательных компьютерах.
Наиболее интересные нейросетевые архитектуры и их приложения
Модель Хопфильда с ассоциативной памятью.
Многослойный персептрон, решающий обширный класс задач распознавания образов.
•Самоорганизующиеся карты Кохенена, обладающие возможностью самостоятельно выявлять закономерности в данных а разбивать входные данные на кластеры.
•Рекурсивные сети Элмана, способные обрабатывать последовательности векторов.
•Вероятностные сети, аппроксимирующие Байесовские классификаторы с любой степенью точности.
Общие принципы, характерные для нейросетей
Согласно общепринятым представлениям наиболее общими принципами, характерными для современных нейросетей являются: коннекционизм, нелинейность активационной функции, локальность и параллелизм вычислений, обучение вместо программирования, оптимальность обучающих алгоритмов.
1. Коннекционизм – это особое течение в философской науке, предметом которого являются вопросы познания. ............