В нынешних кризисных условиях значительно возрастает роль инструментов планирования и прогнозирования развития предприятия. Именно поэтому опыт «Пивоваренной компании “Балтика”» по созданию автоматизированной системы прогнозирования спроса и планирования продаж на наш взгляд весьма интересен.
Надо сказать, что нам очень хотелось расспросить Германа Эпштейна, CIO компании «Балтика», о применении бизнес-аналитики, о построении моделей, о прогнозировании спроса и планировании продаж в связи с задачами, поставленными экономическим кризисом… Для обмена опытом… Но он отказался.
«Если компания начала серьезно задумываться об эффективности цепочки поставок только сейчас, в трудные времена, то вряд ли ей чем то можно помочь, — сказал он. — Ничего специфически “кризисного”, в том числе в области BI, мы не делаем. Повышать эффективность работы нужно постоянно, и тогда компания не встретит кризис с раздутыми затратами и неэффективными бизнес-процессами».
Создание интегрированной системы планирования, неотъемлемой частью которой является система прогнозирования спроса и планирования продаж, в качестве стратегической задачи ИТ-дирекции была поставлена топ-менеджментом «Балтики» еще в 2007 году, по окончании очередного этапа внедрения CRM системы (об этом проекте мы писали в IE, № 7/2008). Полностью проект был завершен в конце 2008-го, и с января 2009-го началась промышленная эксплуатация.
Инициаторами этой работы явились отдел маркетинга и отдел прогнозирования и планирования продаж «Балтики». Была поставлена задача повысить качество прогнозирования спроса по всему ассортименту продукции и по всем звеньям логистической цепочки. Требовалось формировать планы отгрузки продукции на различные периоды на основании прогноза спроса, данных о фактических остатках, целевых указаний.
«Отчеты, генерируемые операционным блоком CRM системы, позволяют получать любую оперативную информацию, — говорит руководитель отдела прогнозирования и планирования продаж Павел Иванов. — Но по мере накопления данных потребовался более глубокий анализ данных за большие периоды времени (до двух лет) с разбивкой по месяцам или неделям. Небходимо было решение, которое могло бы совместить в одной системе координат различные показатели по торговым точкам. Например, дистрибуцию и долю собственной продукции на полке торговой точки».
Задача осложнялась тем, что цепочка движения продукции «Балтики» до потребителя — довольно многозвенная, поэтому чрезвычайно важную роль в аналитической системе должны играть средства взаимодействия с партнерами, со всеми членами логистической цепочки. «Пиво считается проданным, когда потребитель уносит бутылку из магазина, а не в момент отгрузки товара дистрибьютору», — поясняет Герман Эпштейн. Поэтому без актуальных данных о розничных продажах никакое прогнозирование и планирование смысла не имеет. Не менее важны данные возможностях поставщиков и условиях использования транспорта, о наличии сырья, тары, доступных производственных и складских мощностей, полуфабрикатов на разных стадиях производства и готовой продукции, о товарах в пути и т. д. Все эти вопросы требовали особого внимания в ходе проекта.
Наконец, еще одна цель проекта состояла в том, чтобы упорядочить процесс согласования планов продаж в распределённой среде, сделать его более управляемым и понятным для всех участников.
Технический аспект
С технологической точки зрения решение состоит из хранилища данных и разработанного для этой задачи BI-приложения. ............