Министерство образования и науки Республики Казахстан
Павлодарский государственный университет им. С. Торайгырова
Биолого-химический факультет
Кафедра химии и химических технологий
КУРСОВОЙ ПРОЕКТ
Пояснительная записка
1. Классификация центробежных насосов
а) по числу колес:
1) одноступенчатые;
2) многоступенчатые.
В многоступенчатых насосах жидкость проходит через последовательно соединенные рабочие колеса, постепенно увеличивающее напор до заданной величины.
б) по расположению вала рабочего колеса:
1) горизонтальные;
2) вертикальные.
в) по типу всасывания:
1) с односторонним всасыванием;
2) с двусторонним всасыванием.
г) по создаваемому напору:
1) низконапорные (20-25 м);
2) средненапорные (25-60 м);
3) высоконапорные (свыше 60).
д) по быстроходности:
1) тихоходные;
2) быстроходные.
Скорость жидкости в рабочем колесе центробежного насоса представлена на Рис. 1.
Рисунок
1 – скорость жидкости в рабочем колесе центробежного насоса
Достоинства центробежных насосов:
1) малая металлоемкость;
2) небольшой вес;
3) легкий фундамент;
4) небольшая занимаемая площадь;
5) цена ниже, чем у поршневых насосов.
Значительным недостатком центробежных насосов является низкий уровень коэффициента полезного действия (КПД). Этот недостаток усугубляется, когда наряду с низкой производительностью необходимо создать высокий напор.
2. Расчет центробежного насоса
Рассчитываем и подбираем центробежный насос для подачи 0,006 м3/с 9% раствора мета – ксилола С8Н10 из ёмкости, находящейся под атмосферным давлением в аппарат, работающий под избыточным давлением р=0,1 МПа. Температура 300 С, геометрическая высота подъема раствора 10 м. Длина трубопровода на линии всасывания 6м, на линии нагнетания 15м. На линии всасывания установлено два нормальных вентиля, на линии нагнетания два нормальных вентиля и одно колено.
1) Выбор диаметра трубопровода.
Рассчитываем диаметр по формуле (1)
Принимаем скорость мета – ксилола = 2 м/с.
d = (1)
где d-диаметр трубопровода, мм;
V – объемный расход, м3/с;
w – скорость, м/с.
d==0,016 м
Пересчитываем cкорость, выражая ее из формулы (1)
=1.86 м/с
2) Определяем потери напора во всасывающей и нагнетательной линии.
Рассчитываем Критерий Рейнольдса по формуле (2)
Re= (2)
где Re - критерий Рейнольдса;
w – скорость, м/с2;
p – плотность, г/см3.
Re =4315, 2 – переходный турбулентный.
2.1) Определяем степень шероховатости по формуле (3)
(3)
где e – шероховатость стенок трубопровода;
d экв – эквивалентный диаметр, м;
=0,2 λ=0, 026
2.2) Определяем потери напора во всасывающей линии по формуле (4)
На входе: ξ =0,5
На выходе: ξ =1
h п.в.л. ............