MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Коммуникации и связь -> Расчёт и анализ нерекурсивного цифрового фильтра

Название:Расчёт и анализ нерекурсивного цифрового фильтра
Просмотров:264
Раздел:Коммуникации и связь
Ссылка:Скачать(58 KB)
Описание: 1. Краткое математическое описание методов расчёта 1.1. Общие положения Цифровой фильтр полностью описывается своим разностным уравнением:                                                          

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

1. Краткое математическое описание методов расчёта

1.1. Общие положения

Цифровой фильтр полностью описывается своим разностным уравнением:

                                                             (1)

Для нерекурсивного цифрового фильтра  и уравнение принимает вид:

                                                                                (2)

Зная коэффициенты разностного уравнения, можно легко получить выражение для передаточной функции фильтра (для НЦФ):

                                                                                  (3)

Для образа выходного сигнала НЦФ справедливо выражение

,                                                                             (4)

где  – z-преобразования выходного и входного сигналов фильтра.

Зная выражение (4) и учитывая, что z-преобразование функции единичного скачка  равно 1, можно получить выражение для z-образа импульсной характеристики :

                                                                      (5)    

Из (5) следует, что отсчеты импульсной характеристики НЦФ численно равны коэффициентам разностного уравнения НЦФ, а сама импульсная характеристика и передаточная функция связаны парой z-преобразований (прямым и обратным).

Заменив в (4) z на , получим комплексную частотную характеристику:

                                                                          (6)

Импульсная характеристика и комплексная частотная характеристика связаны парой преобразований Фурье:

                                                                (7)

                                                                       (8)

Из комплексной частотной характеристики можно получить выражения для АЧХ и ФЧХ:


           (9)

                                              (10)

Во все вышеприведённые формулы входит интервал квантования . Чтобы от него избавиться, частоту обычно нормируют. Это можно сделать с помощью замены:

                                                                                            (11)

Так как интервал определения , то интервал определения . Исходными данными для проектирования фильтра является его АЧХ. Как правило, в зонах неопределённости АЧХ некоторым образом доопределяют с тем, чтобы избежать явления Гиббса («выбросы» характеристики в точках разрыва первого рода – «скачках»). В простейшем случае доопределить АЧХ можно линейным законом. В этом случае АЧХ проектируемого полосового фильтра будет выглядеть таким образом.

Аналитически АЧХ будет записываться в виде:

                                                         (12)


При проектировании часто полагают, что ФЧХ фильтра является линейной. В [1] показывается, что в этом случае импульсная характеристика фильтра является либо симметричной (), либо антисимметричной (). Учитывая, что порядок фильтра  может быть чётным и нечётным, существует четыре вида ИХ с линейной ФЧХ:

1.  N – нечётное, ИХ – симметричная

2.  N – чётное, ИХ – симметричная

3.  N – нечётное, ИХ – антисимметричная

4.  N – чётное, ИХ – антисимметричная

цифровой фильтр выборка частотный

1.2 Метод частотной выборки

Основная идея метода частотной выборки – замену в выражениях (7) и (8) непрерывную частоту дискретизированной. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  
 
     

Вечно с вами © MaterStudiorum.ru