Дальневосточная академия государственной службы
(заочное обучение)
Факультет государственного и муниципального управления
КУРСОВОЙ ПРОЕКТ
по курсу: Информатика
на тему:
Разработка программы решения системы линейных уравнений
Выполнил: студент
1 курса 3 годичной
заочной формы обучения
(внебюджет)
________ группы
Специальность: ГиМУ
Воищев Алексей Юрьевич
г. Хабаровск 2005
Содержание
Введение
1. Описание математических методов решения систем линейных уравнений
1.1 Метод Гаусса
1.2 Матричный метод
1.3 Вычисление определителей второго и третьего порядка
2. Язык программирования Паскаль
2.1 Структура программы
2.2 Описание переменных
2.3 Основные конструкции языка
2.4 Структуры данных
2.4 Процедуры и функции
3. Описание программы
3.1 Работа программы
3.2 Блок-схема программы
Заключение
Заключение
Список используемых источников и литературы
Приложение
Введение
Последние десятилетия характеризуются бурным развитием вычислительной техники. Расширяются области применения вычислительных машин и совершенствуются методы их использования. Созданы универсальные языки программирования и разработаны мощные операционные системы.
Сейчас невозможно представить себе какую-либо область деятельности, обходящуюся без применения компьютерной техники. Компьютеры используются при проведении различных инженерных расчетов, при решении экономических задач, в процессе управления производством, при получении оценок производственных ситуаций и во многих других случаях.
Системы линейных уравнений появляются почти в каждой области прикладной математики. В некоторых случаях эти системы уравнений непосредственно составляют ту задачу, которую необходимо решать, в других случаях задача сводится к такой системе.
Чтобы быстро справится с решением системы линейных уравнений, можно воспользоваться средствами вычислительной техники - составить программу на языке программирования.
В данной курсовой работе рассматривается возможность решения систем линейных уравнений матричным способом и методом Гаусса с помощью программы, созданной на языке Паскаль.
1. Описание математических методов решения систем линейных уравнений
1.1 Метод Гаусса Идея метода Гаусса состоит в последовательном исключении неизвестных. Алгоритм решения системы уравнений этим методом проследим на примере.
Пример 1.
Выбирается ведущее уравнение с коэффициентом при х1, равным 1. В нашем примере ведущим уравнением будет второе. Систему лучше переписать, поставив это уравнение на первое место:
Умножаем первое уравнение на 6 и вычитаем из полученного второе, чтобы исключить из второго неизвестное х1. Первое уравнение записываем, а на место второго - результат вычитания.
Затем первое уравнение умножим на 3 и складываем с третьим уравнением. Тогда получаем систему
Или
первое уравнение переписываем без изменения, а второе умножаем на 7 и вычитаем из него третье уравнение, умноженное на 15, чтобы избавиться от х2 в третьем уравнении. ............