MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Экономико-математическое моделирование -> Решение задач на переливание на бильярдном столе

Название:Решение задач на переливание на бильярдном столе
Просмотров:207
Раздел:Экономико-математическое моделирование
Ссылка:Скачать(139 KB)
Описание: III научно-практическая конференция школьников по математике, её приложениям и информационным технологиям Поиск Учебно-исследовательская работа Решение задач на переливание н

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

III научно-практическая конференция школьников

по математике, её приложениям и информационным технологиям

Поиск

Учебно-исследовательская работа

Решение задач на переливание на бильярдном столе

Гомель, 2008


Содержание

Введение

1. Математическая модель бильярда

2. Траектории движения

3. Задачи на переливание

3.1 Типичные задачи на переливание

3.2 Условие разрешимости задач

3.3 Алгоритм решения задач на переливание

Заключение

Список использованных источников

Приложение

 


Введение

В данной работе изучаются так называемые бильярдные системы. К простейшим из них относятся «бильярд в плоской области» (точечный шар, движущийся внутри круга, прямоугольника, эллипса, многоугольника и т. д.) и «одномерный бильярд». Общим свойством бильярдных систем является закон абсолютно упругого отражения. О геометрических, «арифметических», физических следствиях этого закона и рассказывается в работе.

Подобно тому, как азартная игра в кости вызвала к жизни «исчисление» вероятностей, игра в бильярд послужила предметом серьезных научных исследований по механике и математике. Описанию движения бильярдного шара (с учетом трения) на прямоугольном столе с лузами посвящена книга известного французского физика Г.Г. Кориолиса, написанная им в 1835 г. за год до избрания его академиком Парижской академии наук.

Методы исследования бильярдных систем (например, анализ поведения бильярдных траекторий), с одной стороны, примыкают к традиционной геометрии, а с другой — лежат на стыке отраслей современной математики — теории чисел, топологии, эргодической теории и теоретической механики. Будучи, как правило, вполне элементарными, эти методы позволяют получить далеко не элементарные выводы.

Общая математическая проблема бильярда заключается в том, чтобы описать возможные типы бильярдных траекторий в данной области Q. Простейший принцип такого описания — разделение траекторий на периодические, или замкнутые, и остальные — непериодические.

Интерес представляют и такие вопросы: Какое число звеньев может иметь периодическая траектория? Какие периоды имеют периодические траектории в данной области (если принять минимальный период периодической траектории, скажем, за единицу)?

Оказывается, это далеко не праздные вопросы — например, они имеют прямое отношение к исследованию специальных систем квантовой механики.

Многие результаты являются классическими и восходят к Кориолису, Больцману, Пуанкаре, Киркгофу. Современная теория бильярдов является одним из актуальных направлений математической физики. Ее основы были заложены советским математиком Я. Г. Синаем и его школой.

В первом разделе данной работы описана математическая модель бильярда.

Во втором разделе описаны виды траекторий бильярного шара.

В третьем разделе описаны задачи на «переливание» и их решение с помощью математической модели бильярда.


1. Математическая модель бильярда

Представьте себе горизонтальный бильярдный стол произвольной формы, но без луз. По этому столу без трения движется точечный шар, абсолютно упруго отражаясь от бортов. Спрашивается, какой может быть траектория этого шарика?

Математическая проблема бильярда, или проблема траекторий, состоит в том, чтобы найти ответ на этот вопрос. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Организация бильярдного клуба
Просмотров:118
Описание: Федеральное агентство по образованию ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНОЙ БИОТЕХНОЛОГИИ

Название:Организация бильярдного клуба на базе отеля "Вознесенский"
Просмотров:229
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Уральский государственный педагогический университет» Факультет туризма и гос

Название:Переливание плацентарной и трупной крови
Просмотров:144
Описание: Реферат на тему: «Переливание плацентарной и трупной крови» Плацентарную кровь можно брать лишь у здоровых рожениц при нормальных родах здоровым младенцем. Противопоказанием с

Название:Переливание крови: история и физиологический анализ
Просмотров:78
Описание: Реферат на тему: «Переливание крови: история и физиологический анализ» Переливание крови — введение с лечебной целью в сосудистое русло больного (реципиента) крови друго

Название:Переливание крови детям
Просмотров:93
Описание: Реферат на тему: «Переливание крови детям» В случае смерти через 1—2 суток после переливания крови в печени могут быть обнаружены обширные участки некроза ткани. Последние распола

 
     

Вечно с вами © MaterStudiorum.ru