Часть полного текста документа:Системы линейных уравнений 1. Критерий совместности Система линейных уравнений имеет вид: a11x1 + a12x2 + ... + a1nxn = b1 a21x1 + a22x2 + ... + a2nxn = b2 (5.1) ... ... ... ... ... ... ... ... ... ... ... am1x2 + am2x2 +... + amnxn = bm Здесь аij и bi (i = ; j = ) - заданные, а xj - неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде: AX = B, (5.2) где A = (аij) - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X = (x1, x2,..., xn)T, B = (b1, b2,..., bm)T - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi. Упорядоченная совокупность n вещественных чисел (c1, c2,..., cn) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2,..., xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2,..., cn)T такой, что AC ? B. Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений. Матрица A = , образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы. Вопрос о совместности системы (5.1) решается следующей теоремой. Теорема Кронекера- Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и A совпадают, т.е. r(A) = r(A) = r. Для множества М решений системы (5.1) имеются три возможности: 1) M = O (в этом случае система несовместна); 2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной); 3) M состоит более чем из одного элемента (тогда система называется неопределенной). В третьем случае система (5.1) имеет бесчисленное множество решений. Система имеет единственное решение только в том случае, когда r(A) = n. При этом число уравнений - не меньше числа неизвестных (m ? n); если m > n, то m-n уравнений являются следствиями остальных. Если 0 < r < n, то система является неопределенной. Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа: a11x1 + a12x2 + ... + a1nxn = b1 a21x1 + a22x2 + ... + a2nxn = b2 (5.3) ... ... ... ... ... ... ... ... ... ... an1x2 + an2x2 + ... + annxn = bn Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера;3) матричным методом. 2. Метод Гаусса Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. ............ |