Министерство образования российской федерации
Московская государственная академия тонкой химической технологии
им. М.В. Ломоносова
Кафедра химии и технологии основного органического синтеза
АТТЕСТАЦИОННАЯ РАБОТА
Сравнительный анализ рециркуляционных схем
на примере реакции изомеризации
На соискание степени бакалавра по направлению 550800
"Химическая технология и биотехнология"
Зам. Зав. Кафедрой ХТООС. Проф. Тимошенко А.В.
Руководитель работы. Доц. Назанский С.Л.
Соискатель Ворошилова Н.В.
МОСКВА 2004 г.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ.. 3
Глава 1. Литературный обзор. 6
1.1. Рециркуляционные процессы. 7
1.2. Методы оценки энергетических затрат в реакционно-ректификационных процессах. 12
1.3. Постановка задачи. 13
Глава 2. Расчетно-аналитическая часть. 14
2.1. Анализ стационарных состояний рециркуляционного реакционно-ректификационного процесса. 14
2.1. Рециркуляционная схема с рециклом, охватывающим два реактора. 15
2.2. Рециркуляционная схема с рециклом, охватывающим один реактор. 19
Глава 3. Расчетная часть. 25
ВЫВОДЫ... 34
Список литературы... 35
ВВЕДЕНИЕ Конечной целью функционирования любой химико-технологической схемы (ХТС) является достижение полной конверсии реагентов и разделение продуктов реакции на отдельные компоненты с заданной степенью чистоты. Однако, при использовании линейных ХТС в большинстве случаев эти цели недостижимы из-за наличия кинетических и термодинамических ограничений, накладываемых спецификой структур диаграмм фазового и химического равновесий. В частности, для обратимых реакций в реакторе любого типа невозможно достижение полной конверсии реагентов [5], а ее максимально возможное значение определяется состоянием химического равновесия. С другой стороны, наличие азеотропов в реакционной смеси часто не позволяет выделить продукты реакции требуемого качества [2]. Часто, при осуществлении медленно протекающих реакций из-за непомерного увеличения объема реактора невозможно достичь равновесия, эти реакции осуществляются с намного меньшим выходом продуктов, чем могло бы быть в условиях равновесия. Однако, если проводить процесс с небольшими превращениями за однократный пропуск при одновременном выводе из системы продуктов реакции и с последующим возвращением в систему непрореагировавших веществ, то можно достичь 100-процентного превращения исходного сырья.
Кроме того, как правило, многие химические реакции сопровождаются параллельно или последовательно протекающими побочными превращениями. Скорость этих реакций и соотношение выходов продуктов в реакциях изменяются в зависимости от условий процесса. Максимальному выходу желаемого продукта будет соответствовать определенная глубина превращения исходного сырья, после которой начнут преобладать побочные реакции.
Таким образом, преодоление указанных ограничений возможно при организации селективного обмена веществом реакционной зоны с окружающей средой [20]. Наличие селективного обмена, независимо от способа его реализации, позволяет, с одной стороны, создавать в реакционной зоне необходимые условия для протекания целевых реакций с высокими скоростями, а с другой стороны, обеспечивать в системе в целом высокую конверсию (вплоть до полного исчерпывания реагентов) и селективность [1]. ............