Содержание
1. Анализ рядов распределения
2. Анализ рядов динамики
3. Индексы
4. Выборочное наблюдение
Список литературы
1. Анализ рядов распределения По данным ряда распределения своего вариант (табл. I) выполнить следующие расчеты. 1.1. Построить ряд распределения. Изобразить ряд графически в виде гистограммы (полигона) и кумуляты распределения. Сделать вывод о характере распределения. 1.2. Рассчитать моду, медиану, первый и третий квартиль. 1.3. Рассчитать средний уровень признака в совокупности; сравнить значение моды, медианы, средней и сделать вывод об асимметрии распределения. 1.4. Рассчитать показатели вариации: размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение, коэффициент вариации. 1.5. Указать другие методы расчета среднего уровня и дисперсии. 1.6. Показать методику расчет дисперсии альтернативного признака. 1.7. Назвать виды дисперсии в совокупности, разбитой на группы, сформулировать правило их сложения и методику расчета показателя тесноты связи между изучаемыми признаками.
Решение
1.1. Построим ряд распределения.
Таблица А Распределение покупателей по стоимости покупок канцелярских товаров
Группы по стоимости покупок Частота 18 – 24 18 24 – 28 27 28 – 32 35 32 – 36 41 36 – 40 30 40 – 44 21 44 и выше 15 Итого (объем ряда) 159
Гистограмма (полигон)
Кумулята распределения.
По виду графиков делаем вывод о нормальном распределении признака.
1.2. Рассчитаем моду, медиану, первый и третий квартиль.
Модальным является интервал (28, 32), содержащий наибольшее число покупателей. Модальный размер стоимости покупок:
Медиана определяется по формуле:
.
Медианным интервалом является интервал [28 - 32], содержащий -го покупателя. Медианный размер стоимости покупок:
=30,774.
Первый квартиль определяется по формуле:
Он задается интервалом [24 - 28], содержащим -го покупателя.
Третий квартиль определяется по формуле
Он задается интервалом [32 - 36], содержащим 3*-го покупателя.
1.3. Переходим от интервального ряда к моментному, приняв за стоимость покупок середину соответствующего интервала.
№ интервала
Середина Интервала ()
Число Покупателей ()
1 21 14 294 2 26 36 936 3 30 43 1290 4 34 27 918 5 38 20 760 6 42 15 630 7 46 4 184 Всего 159 5012
Находим средний уровень признака в совокупности по формуле средней арифметической взвешенной:
.
Получаем: 5012/159=31,522.
Так как мода и медиана меньше среднего уровня признака, то коэффициент асимметрии положителен.
1.4. Для расчетов показателей вариации составляем вспомогательную таблицу.
№ интервала
Середина
интервала
()
Число
покупателей
()
1 21 14 10,522 147,308 110,713 1549,978 2 26 36 5,522 198,792 30,493 1097,734 3 30 43 1,522 65,447 2,317 99,610 4 34 27 2,478 66,906 6,140 165,791 5 38 20 6,478 129,560 41,964 839,286 6 42 15 10,478 157,170 109,788 1646,823 7 46 4 14,478 57,912 209,612 838,448 Всего 159 823,094 6237,673
Размах вариации:
= 46 – 21=25.
Среднее линейное отклонение:
= 823,094/ 159 = 5,177,
Дисперсия:
= 6237,673/ 159 = 39,231,
Среднее квадратическое отклонение
= 6,263,
Коэффициент вариации
= 6,263*100/ 31,522 = 19,87%.
1.5. ............