§1. Топологические пространства
(предварительные сведения)
1.1. Непрерывные отображения топологических
пространств
Пусть Х и Y топологические пространства.
Определение 1. Отображение f : Х→Y называется непрерывным, если у всякого множества О, открытого в пространстве Y, полный прообраз f –1(О) открыт в пространстве Х.
Замечание 1. Для любого подмножества А пространства Y и отображения f: X→Y справедливо следующее равенство:
(1).
Теорема 1.1. Отображение f : X→Y является непрерывным тогда и только тогда, когда у всякого множества F, замкнутого в Y, полный прообраз f –1(F) замкнут в Х.
Доказательство. Необходимость. Пусть отображение f : X→Y является непрерывным, т.е. для любого множества О, открытого в Y, прообраз f –1(O) открыт в Х, и пусть F произвольное замкнутое в Y множество. Тогда множество CF открыто в Y, и множество открыто в Х, в силу непрерывности отображения f и равенства (1). Следовательно, множество f –1(F) замкнуто в Х.
Достаточность. Пусть для любого множества F, замкнутого в Y, полный прообраз f –1(F) замкнут в Х. Рассмотрим произвольное открытое в Y множество О. Тогда множество CO будет замкнутым в Y. Поэтому замкнутое в Х множество. Следовательно, множество открыто в Х. Таким образом, для любого множества О, открытого в Y, полный прообраз открыт в Х и отображение f : X→Y непрерывное по определению. €
1.2. Связность топологических пространств
Определение 4. Топологическое пространство Х называется несвязным, если его можно разбить на два непустых непересекающихся открытых множества:
Х = О1 О2.
Определение 5. Пространство Х называется связным, если такого разбиения не существует.
Заметим, что если несвязное пространство Х разбито на два непустых открытых множества О1 и О2, не имеющих общих точек, то О1 = CO2 и O2 = CO1. Поэтому можно дать другое определение связного пространства:
Определение 6. Топологическое пространство Х называется связным, если в нём одновременно открытым и замкнутым множеством является лишь само пространство или пустое множество.
Определение 7. Множество Н в топологическом пространстве Х называется связным, если оно является связным пространством относительно индуцированной топологии.
Теорема 1.2. Для топологического пространства Х следующие условия эквивалентны:
(1) существуют непустые открытые множества О1 и О2, для которых О1 ∩ О2 = Æ и О1 О2 = Х;
(2) существуют непустые замкнутые множества F1 и F2, для которых F1 ∩ F2 = Æ и F1 F2 = Х;
(3) в Х существует нетривиальное открыто-замкнутое множество G;
(4) существует непрерывная сюръективная функция φ : Х ® {1, 2}.
Доказательство. ............