MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Задача о бесконечной ортотропной пластинке

Название:Задача о бесконечной ортотропной пластинке
Просмотров:97
Раздел:Математика
Ссылка:Скачать(103 KB)
Описание:Упругие свойства материала, математическая постановка задачи, аналитическое решение.

Часть полного текста документа:

Задача о бесконечной ортотропной пластинке с эллиптическим отверстием
    
    Оглавление
    
    1. Общетеоретическая часть
    2. Прикладная часть
    2.1 Физическая постановка задачи
    2.2 Упругие свойства материала
    2.3 Математическая постановка задачи
    2.4 Аналитическое решение
    2.5 Иллюстрация распределения напряжений
    Используемая литература.
    Приложение 1. (Расчетная схема на MathCad 7.0 )
    Приложение 2. (График распределения напряжений).
    
    1. Общетеоретическая часть
    
    Рассмотрим бесконечную пластинку с некоторым отверстием в центре. Центр отверстия примем за начало координат, а оси х1, х2 направим по главным направлениям упругости. На пластинку действуют некоторые распределенные нагрузки p1, p2 вдоль соответствующих осей.
    
    Общая система уравнение теории упругости выглядит следующим образом:
     (1)
    
    Уравнения равновесия применительно к рассматриваемой задаче, т.е. когда напряжения зависят только от двух координат, запишутся так:
     (2)
    
    В нашей задаче искомыми являются шесть функций компонент тензора напряжений . Но в уравнения равновесия (2) не входит , тем самым этой функции определяется особая роль. Для простоты последующих математических выкладок примем следующие предположения. Пусть для f1(x1,x2) и f2(x1,x2) существует потенциал, т.е. такая функция U(x1,x2) для которой выполняются условия:
     (3)
    Так как силы f1 и f2 задаются при постановки задачи, то потенциал U так же известная функция. Подставляя (3) в (2) получим:
    
     (4)
    
    Введем также еще две функции F(x1,x2) и ?(x1,x2), которые называются функциями напряжений и вводятся следующим образом:
    
    
    
    Нетрудно видеть, что при подстановки всех этих формул в систему (4) все три уравнения будут равны нулю. Теперь если мы найдем функции F(x1,x2) и ?(x1,x2), то будут найдены и функции компонент тензора напряжений, кроме компоненты .
    Для упрощения дальнейших выкладок сделаем следующие преобразования. Так как тензор модулей упругости Сijmn представляет собой матрицу 6х6 из которых 21 компонента независимая, то для тензора напряжений и тензора деформаций вводится матрица столбец:
    
    
    Тогда уравнения Коши запишутся следующим образом:
    
    
    а через напряжения компоненты деформации определяются по закону Гука:
     (5)
    где aij - компоненты матрицы независимых постоянных тензора упругих податливостей Dijmn.
    Обозначим как неизвестную функцию D(x1,x2), тогда из закона Гука следует, что:
    
    а выражение для будет равно:
    
    Теперь введем приведенные коэффициенты деформации, для которых имеет место выражение:
    , где i,j=1..6 (6)
    Подставим выражение для в обобщенный закон Гука, тогда с учетом приведенных коэффициентов деформаций эти выражения примут вид:
    
    Подставляя эти выражения в уравнения Коши получим следующую систему:
     (7)
    
    Уравнения системы (7) включают в себя и уравнения Коши и закон Гука. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Кинетические уравнения Власова
Просмотров:356
Описание: Дипломная робота Пояснительная записка «Кинетические уравнения Власова» Студент группы Иванов И.И. Руководитель работы Пересечанский В.М. Заведующий кафедры "Мат

Название:Уравнения смешанного типа
Просмотров:322
Описание: Содержание Введение 1. Нелокальная граничная задача Ι рода 2. Нелокальная граничная задача II рода Литература уравнение спектральный нелокальный дифференциальный Введение В современной те

Название:Некоторые уравнения математической физики в частных производных
Просмотров:330
Описание: Федеральное агентство по образованию ГОУ "Ульяновский государственный педагогический университет им. И. Н. Ульянова" Кафедра математического анализа "Некоторые уравнения математич

Название:Уравнения линейной регрессии
Просмотров:319
Описание: Министерство образования и науки РФ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Всероссийский заочный финансово-экономически

Название:Приближенное решение интегрального уравнения
Просмотров:273
Описание: МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С. П. Королева Кафедра высшей математики ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой раб

 
     

Вечно с вами © MaterStudiorum.ru