Часть полного текста документа: Задача о бесконечной ортотропной пластинке с эллиптическим отверстием Оглавление 1. Общетеоретическая часть 2. Прикладная часть 2.1 Физическая постановка задачи 2.2 Упругие свойства материала 2.3 Математическая постановка задачи 2.4 Аналитическое решение 2.5 Иллюстрация распределения напряжений Используемая литература. Приложение 1. (Расчетная схема на MathCad 7.0 ) Приложение 2. (График распределения напряжений). 1. Общетеоретическая часть Рассмотрим бесконечную пластинку с некоторым отверстием в центре. Центр отверстия примем за начало координат, а оси х1, х2 направим по главным направлениям упругости. На пластинку действуют некоторые распределенные нагрузки p1, p2 вдоль соответствующих осей. Общая система уравнение теории упругости выглядит следующим образом: (1) Уравнения равновесия применительно к рассматриваемой задаче, т.е. когда напряжения зависят только от двух координат, запишутся так: (2) В нашей задаче искомыми являются шесть функций компонент тензора напряжений . Но в уравнения равновесия (2) не входит , тем самым этой функции определяется особая роль. Для простоты последующих математических выкладок примем следующие предположения. Пусть для f1(x1,x2) и f2(x1,x2) существует потенциал, т.е. такая функция U(x1,x2) для которой выполняются условия: (3) Так как силы f1 и f2 задаются при постановки задачи, то потенциал U так же известная функция. Подставляя (3) в (2) получим: (4) Введем также еще две функции F(x1,x2) и ?(x1,x2), которые называются функциями напряжений и вводятся следующим образом: Нетрудно видеть, что при подстановки всех этих формул в систему (4) все три уравнения будут равны нулю. Теперь если мы найдем функции F(x1,x2) и ?(x1,x2), то будут найдены и функции компонент тензора напряжений, кроме компоненты . Для упрощения дальнейших выкладок сделаем следующие преобразования. Так как тензор модулей упругости Сijmn представляет собой матрицу 6х6 из которых 21 компонента независимая, то для тензора напряжений и тензора деформаций вводится матрица столбец: Тогда уравнения Коши запишутся следующим образом: а через напряжения компоненты деформации определяются по закону Гука: (5) где aij - компоненты матрицы независимых постоянных тензора упругих податливостей Dijmn. Обозначим как неизвестную функцию D(x1,x2), тогда из закона Гука следует, что: а выражение для будет равно: Теперь введем приведенные коэффициенты деформации, для которых имеет место выражение: , где i,j=1..6 (6) Подставим выражение для в обобщенный закон Гука, тогда с учетом приведенных коэффициентов деформаций эти выражения примут вид: Подставляя эти выражения в уравнения Коши получим следующую систему: (7) Уравнения системы (7) включают в себя и уравнения Коши и закон Гука. ............ |