MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Физика -> Законы Кирхгофа

Название:Законы Кирхгофа
Просмотров:107
Раздел:Физика
Ссылка:Скачать(55 KB)
Описание: Академия ФСО России Кафедра Физики Тема: «Законы Кирхгофа и их применение для расчета электрических цепей» Орел-2009 Содержание

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Академия ФСО России

Кафедра Физики Тема: «Законы Кирхгофа и их применение для расчета электрических цепей» Орел-2009
Содержание

Первый закон Кирхгофа

Второй закон Кирхгофа

Расчет сложных цепей с помощью уравнений Кирхгофа


Первый закон Кирхгофа

Алгебраическая сумма токов в ветвях, сходящихся к любому узлу электрической цепи, тождественно равна нулю. Согласно этому закону, если к некоторому узлу цепи подсоединено n ветвей с токами i1, i2, ..., in, то в любой момент времени

,

где , если направление тока положительно и ориентировано от узла (ток выходит из узла), или , если ток входит в узел. Таким образом, любому узлу цепи соответствует уравнение, связывающее токи в ветвях цепи, соединенных с данным узлом.

В качестве примера приведем схему на рисунке 1.

Рис.1.

В соответствии с первым законом Кирхгофа:

.

Общее число уравнений, которое можно составить по первому закону Кирхгофа для цепи, равно числу узлов цепи .

Так, для четырех узлов графа (рисунок 2) можно составить следующие четыре уравнения:


Рис.2.

узел 1: ,

узел 2: ,

узел 3: ,

узел 4: .

Первый закон Кирхгофа часто называют законом Кирхгофа для токов и сокращенно в тексте обозначают ЗКТ.

Число независимых уравнений равно трем, так как любое из этих уравнений отличается от суммы трех остальных только знаком. Итак, если цепь содержит  узлов, то для неё можно составить по первому закону Кирхгофа  независимых уравнений. Совокупность из N узлов цепи, уравнения для которых образуют систему линейно независимых уравнений, называют совокупностью независимых узлов цепи.

Примеры на применение первого закона Кирхгофа. Параллельное соединение элементов

 

В качестве примера на применение первого закона Кирхгофа рассмотрим параллельное соединение нескольких элементов активных сопротивлений, конденсаторов, катушек индуктивности.

Особенностью параллельного соединения нескольких элементов является равенство напряжений, приложенных к зажимам любого из элементов, входящих в соединение. Цепь при таком соединении характеризуется только одним независимым узлом.

Пусть параллельно соединены n элементов активного сопротивления. Если выбрать направления отчетов токов в элементах такими как это показано на рисунке 3, то согласно первому закону Кирхгоффа при параллельном соединении элементов запишем:



    
    
    


    

u


    

    
       Рис.3.

;

учитывая, что , имеем ,

где .

Зависимость  не отличается от зависимости между напряжением на зажимах и током в элементе активного сопротивления с проводимостью G. Следовательно, цепь, составленная из нескольких сопротивлении, включенных параллельно, может быть заменена одним активным сопротивлением, при этом проводимость эквивалентного элемента равна сумме проводимостей элементов, входящих в соединение.

При параллельном соединении конденсаторов (рисунок 4) ток ветви можно определить по формуле: .



Рис.4.

Для вычисления общего тока необходимо просуммировать токи ветвей:

,

где ..

Таким образом, при параллельном соединении нескольких конденсаторов эквивалентная ёмкость равна сумме емкостей, входящих в соединение.

В случае параллельного соединения катушек индуктивностей (рисунок 5)
ток каждой из ветвей равен: .

Рис.5.

Уравнение для вычисления общего тока имеет вид:

.

Следовательно , то есть .

Это означает, что значение эквивалентной индуктивности будит меньше наименьшего из значений соединённых параллельно индуктивностей.

 

Второй закон Кирхгофа

Второй закон Кирхгофа формулируется следующим образом: алгебраическая сумма напряжений ветвей в любом контуре цепи тождественно равна нулю. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Программирование системы уравнений
Просмотров:89
Описание: Содержание Введение 1 Постановка задачи 2 Решение системы уравнения методом Гаусса 3 Решение уравнения методами Ньютона, Хорд 4 Разработка блок схемы решения системы уравнения методом Гаусса 5 Разрабо

Название:Системы линейных и дифференциальных уравнений
Просмотров:142
Описание: к/р № 1 1.  Решить матричные уравнения и сделать проверку.   Решение:   Найдём обратную матрицу . Обратной для матрицы А есть матрица , где  - определитель матрицы А, а элементы матрицы A*

Название:Приближённое решение алгебраических и трансцендентных уравнений
Просмотров:113
Описание:        Приближённое решение алгебраических и трансцендентных  уравнений 1. Общая постановка задачи. Найти действительные корни уравнения , где - алгебраическая или трансцендентная функция. Точные методы реш

Название:Нестандартные методы решения уравнений и неравенств
Просмотров:220
Описание: СОДЕРЖАНИЕ ВВЕДЕНИЕ 1 ИСТОРИЧЕСКАЯ СПРАВКА 2 РЕШЕНИЕ ЗАДАЧ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ ФУНКЦИИ     2.1 Использование монотонности функции 2.2 Использование ограниченности функции 2.3 Использование перио

Название:Нестандартные методы решения тригонометрических уравнений: графический и функциональный
Просмотров:129
Описание: Фрунзенский район Технологическая гимназия №13 г. МинскаАвторы: Кравченко Арсений Борисович ученик 9”Д” класса ул. Горецкого 69-263 д.т. 215-84-33 Ермолицкий Алексей Александрович ученик 9”Д” класса ул.

 
     

Вечно с вами © MaterStudiorum.ru