БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ:
«Зонная модель твердого тела. Уравнение Шредингера для кристалла»
МИНСК, 2008
Любое твердое тело представляет собой систему, состоящую из огромного числа ядер и ещё большего числа электронов. Современное состояние математической физики позволяет утверждать, что целый ряд сведений о свойствах такой системы, в том числе и об энергетическом спектре можно получить из решения уравнения Шредингера, описывающего стационарные состояния этой системы. В этом случае уравнение Шредингера имеет вид:
Где m и M соответственно массы электронов и ядер; ri и Rj – радиус-векторы i-го электрона и j-го ядра; Zj и Zn – атомные номера ядер; Rjn , rik, rij – расстояния между соответствующими ядрами и электронами; Е – полная энергия кристалла; Ψ – собственная волновая функция системы электронов и атомов.
В приведенном уравнении первое слагаемое описывает кинетическую энергию электронов, второе – кинетическую энергию ядер. Множители при волновой функции в следующих трёх слагаемых описывают соответственно, потенциальную энергию взаимодействия ядер с друг другом, электронов друг с другом и энергию взаимодействия электронов с ядрами.
Сегодня неизвестны способы точного решения уравнения Шредингера, так как для кристалла волновая функция Ψ зависит от огромного числа (1024-1025) независимых переменных ( в 1см2 содержится примерно 5∙1022 ядер атомов, каждое ядро содержит большое количество электронов).
Теория должна найти разумные допущения, которые позволят решать данное уравнение, сохранить его принципиальные черты, отличающие кристалл от отдельного изолированного атома.
Прежде чем рассматривать свойства твердых тел необходимо рассмотреть закономерности образования твердого тела из отдельных изолированных атомов.
Обобществление электронов в кристалле.
Для того чтобы понять особенности явлений, имеющих место в твердых телах, рассмотрим следующий идеализированный пример. Возьмем атом натрия.
Расположим N атомов натрия на больших расстояниях друг от друга в трехмерном пространстве так, чтобы они образовали в значительно увеличенном виде кристаллическую решетку натрия. Так как расстояния между атомами r значительно больше параметра решетки а( а= 4.3Å; r>>а), то взаимодействием между атомами можно пренебречь.
На рисунке каждый атом изображен в виде потенциальной ямы, внутри которой проведены энергетические уровни 1s, 2s и 2p - укомплектованы у натрия полностью, уровень 3s – наполовину, остальные уровни, расположенные выше уровня 3s – свободны.
Изолированные атомы отделены друг от друга потенциальными барьерами шириной r. Высота барьера для электронов, находящихся на разных уровнях различна. Она равна расстоянию от этих уровней до нулевого уровня 00. Потенциальный барьер препятствует свободному переходу электронов от одного атома к другому.
Рис. Ррасположение атомов натрия в линейной цепочке. d-параметр решетки.
Качественная картина распределения плотности вероятности обнаружения электронов на данном расстоянии от ядра показывает, что максимумы этих кривых примерно соответствуют положению боровских орбит для эти электронов.
Теперь начнем сближать атомы натрия таким образом, чтобы в конце однородного сжатия они находились бы на расстояниях, равных параметру решетки. ............