АЛГОРИТМИ РОЗРАХУНКУ ПЕРІОДИЧНОГО РЕЖИМУ В НЕЛІНІЙНІЙ СХЕМІ
1. Коротка характеристика методів розрахунку
Вузли, проектування яких нас цікавить, в більшості випадків використовуються в режимах, де нелінійність виявляється досить сильно. Тому не розглядають методи, які знаходять практичне застосування лише для аналізу слабких нелінійних схем. До їх числа відноситься, наприклад, метод рядів Вольтера.
Методи, які дозволяють розраховувати довільні нелінійні кола, поділяють на дві великі групи – часові та спектральні.
Характерна властивість методів першої групи – це інтегрування нелінійних диференційних рівнянь до отримання усталеного періодичного режиму. Головний недолік їх в тому, що цікавлячись усталеним режимом, ми повинні розрахувати ще і перехідні процеси. Із цим недоліком можна миритись, якщо зусилля і затрати на незаплановані розрахунки невеликі, тобто якщо, наприклад, перехідний режим продовжується недовго. Звісно, що перехідний процес в схемі тим коротший, чим менше її вибірність.
Необхідність визначення періодичного режиму у вибірних пристроях створила ряд прийомів, скоротивши розрахункову процедуру. Пояснимо їх на прикладі. Нехай у нелінійній схемі період усталеного режиму відомий, задана величина і, крім цього, можна говорити, що перехідний процес практично завершується за L періодів. Таким чином, щоб знайти періодичний режим, треба інтегрувати диференційне рівняння схеми протягом L періодів. Перший прийом складається в зменшені часу інтегрування на кожному періоді. Це змушує використовувати такі чисельні методи, які, зберігаючи потрібну точність, дозволяють вести інтегрування з максимальним кроком. Ідея другого прийому – виконувати інтегрування не на кожному періоді, а із пропусками. Для її реалізації формується функція незв’язності, котра характеризує ступінь досягнення усталеного режиму. За допомогою цієї функції, із початковими умовами на якомусь періоді, визначаються початкові умови для інтегрування на наступному періоді.
Очевидно, якщо перехідний процес закінчиться, то початкові умови, використані на попередньому періоді, співпадуть з початковими умовами, обчисленими для наступного. Виявилось, що за початковими умовами для k–го періоду можна приблизно знайти початкові умови для (k+m)-го періоду, де m- ціле число, більше одиниці. В результаті, число періодів, протягом яких треба інтегрувати рівняння, скоротиться в m разів.
У спектральних методах розрахунку визначається періодичне рішення нелінійних диференційних рівнянь, записаних у формі ряду Фур’є. Відносно спектральних компонент цього ряду утворюється система нелінійних (трансцендентних) рівнянь, котра вирішується за допомогою ітерацій. Різновиди методів цієї групи визначається тим, як побудовано ітераційний процес.
Для схемотехнічного проектування розрахунок періодичного режиму потрібен як у випадку, коли період процесу відомий, так і коли період повинен бути знайдений. Перша ситуація характерна для підсилювачів потужності, помножувачів та дільників частоти, тобто для схем, в яких є зовнішня дія. В таких схемах в якості робочого використовують періодичний режим із періодом, рівним періоду зовнішнього сигналу або в ціле число разів більшим за цей період. ............