Геометрия Лобачевского
Оглавление
Введение
Глава I. История возникновения неевклидовой геометрии
1.1 V постулат Евклида, попытки его доказательства
1.2 Постулаты параллельности Евклида и Лобачевского
Глава II. Геометрия Лобачевского
2.1 Основные понятия
2.2 Непротиворечивость геометрии Лобачевского
2.3 Модели геометрии Лобачевского
2.4 Дефект треугольника и многоугольника
2.5 Абсолютная единица длины в геометрии Лобачевского
2.6 Определение параллельной прямой. Функция П(х)
2.7 Модель Пуанкаре
Практическая часть
1. Сумма углов треугольника
2. Вопрос о существовании подобных фигур
3. Основное свойство параллелизма
4. Свойства функции П(х)
Заключение. Выводы
Приложения
Список использованной литературы
Введение
Данная работа показывает сходство и различия двух геометрий на примере доказательства одного из постулатов Евклида и продолжение этих понятий в геометрии Лобачевского с учетом достижений науки на тот момент.
Любая теория современной науки считается верной, пока не создана следующая. Это своеобразная аксиома развития науки. Этот факт многократно подтверждался.
Физика Ньютона переросла в релятивисткую, а та - в квантовую. Теория флогистона стала химией. Такова судьба всех наук. Участь эта не обошла геометрию. Традиционная геометрия Евклида переросла в геометрии. Лобачевского. Именно этому разделу науки посвящена эта работа.
Цель данной работы: рассмотреть отличие геометрии Лобачевского от геометрии Евклида.
Задачи данной работы: сравнить теоремы геометрии Евклида с аналогичными теоремами геометрии Лобачевского;
посредством решения задач вывести положения геометрии Лобачевского.
Выводы: 1. Геометрия Лобачевского построена на отказе от пятого постулата Евклида.
2. В геометрии Лобачевского:
не существует подобных треугольников, которые не равны;
два треугольника равны, если их углы равны;
сумма углов треугольника не равна 1800, а меньше (сумма углов треугольника зависит от его размеров: чем больше площадь, тем сильнее отличается сумма от 1800; и наоборот, чем меньше площадь, тем ближе сумма его углов к 1800 );
через точку вне прямой можно провести более одной прямой, параллельной данной.
Рекомендации: Я предлагаю использовать эту работу как дополнительную литературу в классах с углубленным изучением математики.
Глава 1. История возникновения неевклидовой геометрии
1.1 V постулат Евклида, попытки его доказательства
Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение на столько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда «Начала» оно было единственным руководством для изучающих геометрию.
«Начала» состоят из 13 книг, посвященных геометрии и арифметике в геометрическом изложении.
Каждая книга «Начал» начинается определением понятий, которые встречаются впервые. Вслед за определениями Евклид приводит постулаты и аксиомы, то есть утверждения, принимаемые без доказательства.
V постулат Евклида гласит: и чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние внутренние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.
Важнейшим недостатком системы евклидовых аксиом, включая и его постулаты, является ее неполнота, то есть недостаточность их для строго логического построения геометрии, при котором каждое предложение, если оно не фигурирует в списке аксиом, должно быть логически выведено их последних. ............