MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Математическое ожидание и дисперсия для интервальных и пропорциональных шкал. Доверительные интервалы

Название:Математическое ожидание и дисперсия для интервальных и пропорциональных шкал. Доверительные интервалы
Просмотров:105
Раздел:Математика
Ссылка:Скачать(21 KB)
Описание:Рассмотрим случай, когда в проводимом эксперименте числовая шкала имеет единицу измерения, т.е. про полученные числовые величины всегда можно сказать, насколько одно больше другого.

Часть полного текста документа:

Математическое ожидание и дисперсия для интервальных и пропорциональных шкал. Доверительные интервалы.
    С.В. Усатиков, кандидат физ-мат наук, доцент; С.П. Грушевский, кандидат физ-мат наук, доцент; М.М. Кириченко, кандидат социологических наук
    Рассмотрим случай, когда в проводимом эксперименте числовая шкала имеет единицу измерения, т.е. про полученные числовые величины всегда можно сказать, насколько одно больше другого. Например, х - это число ошибок, допущенных при каком-либо тестировании, или число правильных ответов. Обозначим х1,...,хк деления этой шкалы, а n1,...,nk - частоты или число попаданий случайной величины х на каждое из этих делений. Например, в тестировании: шкала х1=0 правильных ответов, ..., хк=к-1 правильных ответов; n1 тестируемых не дали ни одного правильного ответа, ..., nk тестируемых дали к-1 правильных ответов.
    Математическим ожиданием или просто средним называется число mx, вычисляемое по следующему правилу:
    mx= (n1x1+.....+nkxk),
    где n=n1+...+nk - общее число испытаний
    Дисперсией называется число , вычисляемое по следующему правилу:
    чаще используется число , которое называется стандартным отклонением.
    Например, группу из n=11 учащихся опросили и получили следующее число правильных ответов: Шкала Xi 8 9 10 11 12 13 14 15 16 17 18 19 Частоты ni 0 1 0 1 1 2 2 2 1 0 1 0 Здесь 9 правильных ответов дал только один человек, 10 - ни одного, 13 правильных ответов дали 2 человека и т.п. Тогда:
    
    или
    Таким образом, mx является обобщенным показателем достигнутого группой уровня в среднем, в виде одного числа, как меры центральной тенденции. Число же s x показывает, насколько испытуемые в группе отличаются по уровню развития изучаемого признака. Чем больше s x, тем больше различия у испытуемых, тем более разнородна по составу группа. Наоборот, чем меньше s x , тем однороднее группа и тем ближе по своему уровню испытуемые.
    Дисперсия - весьма важный для исследователя-практика показатель. Анализируя ту или иную сторону учебно-воспитательного процесса, необходимо сравнивать большие наборы средних арифметических. Скажем, если опрос проводили в пяти классах параллели, а анкета содержала 15 вопросов с интервальной шкалой, каковой приписывались балльные значения, то общее число значений средних арифметических достигает 75. При этом самый опытный исследователь может запутаться в расчетах и пропустить какую-либо зависимость (или же обнаружить ее там, где она никогда не существовала). Это делать довольно легко, так как средняя арифметическая, как мера центральной тенденции, обладает рядом весьма капризных свойств. Понять их помогает приводимая ниже таблица.
    "Удовлетворяют ли Вас результаты проведенной аттестации ?" Позиция вопроса Да, в полной мере В общем да, за исключением нес-кольких моментов Скорее всего нет Совершенно не удовлет-воряет Трудно сказать Балльное значение, приписанное позиции +2 +1 -1 -2 0 Выборка 1 20% 20% 20% 20% 20% Выборка 2 0% 50% 50% 0% 0% Выборка 3 0% 0% 0% 0% 100% Выборка 4 10% 10% 10% 10% 60% Если мы рассчитаем результаты этих четырех опросов, то получим, что во всех случаях mx=0. Разумеется, вероятность получить столь явно расходящиеся, как в нашей таблице, распределения, равна нулю - в практике возможны лишь какие-либо приблеженные варианы. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Объем фигур вращения правильных многогранников
Просмотров:198
Описание: ОТДЕЛ ОБРАЗОВАНИЯ ГОМЕЛЬСКОГО ГОРОДСКОГО ИСПОЛНИТЕЛЬНОГО КОМИТЕТА Государственное учреждение образования «Средняя общеобразовательная школа №22 г. Гомеля» Учебно-исследовательская работ

Название:Общее доказательство гипотезы Биля, великой теоремы Ферма и теоремы Пифагора
Просмотров:306
Описание: Файл: MENTOR © Н.М. Козий, 2007 Авторские права защищены свидетельствами Украины № 23145 и № 27312 ОБЩЕЕ ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ БИЛЯ, ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА И ТЕОРЕМЫ ПИФАГОРА ДОКАЗАТЕЛЬСТВ

Название:50 вопросов и 50 ответов из христианско-психотерапевтической практики. Зло в мире и зло в человеке
Просмотров:205
Описание: Владета Еротич, , перевод С. Луганской 11. Возможно ли существование человека и мира без зла ? «Умри и будь!» - призывает неизменно вдохновенный Гете, как будто процесс исчезновения и возникновения, умирания и новог

Название:Проверка гипотезы о законе распределения случайной величины по критерию Пирсона
Просмотров:138
Описание: 1. Случайная выборка объема Под случайной выборкой объема n понимают совокупность случайных величин , не зависимых между собой. Случайная выборка есть математическая модель проводимых в одинаковых условиях

Название:Статистическая проверка гипотез
Просмотров:66
Описание: Содержание Введение Статистическая проверка гипотез 1.Статистическая гипотеза. Статистический критерий. Ошибки, возникающие при проверке гипотез 2. Порядок проверки статистических гипотез 3. Проверка

 
     

Вечно с вами © MaterStudiorum.ru