Введение
Система линейных алгебраических уравнений – математическая модель, которая описывает состояние равновесия экономического объекта, которое называется установившимся режимом или статикой объекта. Экономическая статика изучает допустимые и рациональные состояния экономического объекта.
Пусть дана система n линейных алгебраических уравнений с n неизвестными
или в матричной форме
Ax = b,
где
- матрица коэффициентов,
- столбец свободных членов и столбец неизвестных соответственно.
Если матрица А неособенная, т.е.
то система (1.1) имеет единственное решение. В этом случае решение системы (1.1) с теоретической точки зрения не представляет труда. Значения неизвестных xi (i=1,2,…n) могут быть получены по известным формулам Крамера
крамер квадратный корень матрица
где матрица Ai получается из матрицы А заменой ее i-го столбца столбцом свободных членов.
Но такой способ решения линейной системы с n неизвестными приводит к вычислению n + 1 определителей порядка n, что представляет собой весьма трудоемкую операцию при сколько-нибудь большом числе n.
Применяемые в настоящее время методы решения линейных систем можно разбить на две группы: точные и приближенные.
Точными методами называются такие методы, которые в предположении, что вычисления ведутся точно (без округлений), приводят к точным значениям неизвестных xi. Так как на практике все вычисления ведутся с округлениями, то и значения неизвестных, полученные точным методом, неизбежно будут содержать погрешности. К точным методам относятся, например, метод Гаусса, метод квадратных корней.
Приближенными методами называются такие методы, которые даже в предположении, что вычисления ведутся без округлений, позволяют получить решение системы (x1, x2, …, xn) лишь с заданной точностью. Точное решение системы в этих случаях может быть получено теоретически как результат бесконечного процесса. К приближенным методам относятся метод простой итерации, метод Зейделя и др. Каждый из этих методов не всегда является сходящимся в применении к конкретному классу систем линейных уравнений.
Данная контрольная работа имеет следующую структуру: в начале рассматривается математическая постановка задачи для метода квадратных корней при решении систем линейных алгебраических уравнений. Затем производится реализация данного метода с помощью вычислительных средств ЭВМ, а именно прикладной программой Matlab 6.5. На примере реализации нескольких тестовых задач проводится анализ точности данного метода, а именно когда наиболее эффективно применять метод квадратных корней при решении систем линейных алгебраических уравнений. Анализ проводится на основе матрицы А (ее мерности, разреженности, обусловленности. Результаты, полученные на основе метода квадратных корней, приведены в конце данной работы. Также в работе представлен графический материал. По окончании проведения исследования работа завершается логическим заключением.
Математическая постановка задачи
Метод квадратных корней используется для решения линейной системы
Ax = b,
у которой матрица А симметрическая, т.е.
aij = aji (i, j = 1, 2, …, n).
Метод является более экономным и удобным по сравнению с решением систем общего вида.
Решение системы осуществляется в два этапа.
Прямой ход. ............