MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Методы решения систем линейных неравенств

Название:Методы решения систем линейных неравенств
Просмотров:82
Раздел:Математика
Ссылка:Скачать(109 KB)
Описание:Сейчас теория конечных систем линейных неравенств может рассматриваться как ветвь линейной алгебры, выросшая из неё при дополнительном требовании упорядоченности поля коэффициентов.

Часть полного текста документа:

ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РФ Кафедра математики и финансовых приложений Курсовая работа на тему: "Методы решения систем линейных неравенств" Выполнил студент группы МЭК 1-2 Чанкин Пётр Алексеевич Научный руководитель: Профессор Александр Самуилович Солодовников Москва 2002г Оглавление ВСТУПЛЕНИЕ 2 ГРАФИЧЕСКИЙ МЕТОД 3 СИМПЛЕКС-МЕТОД 6 МЕТОД ИСКУССТВЕННОГО БАЗИСА 8 ПРИНЦИП ДВОЙСТВЕННОСТИ 10 СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 12 Вступление Отдельные свойства систем линейных неравенств рассматривались еще в первой половине 19 века в связи с некоторыми задачами аналитической механики. Систематическое же изучение систем линейных неравенств началось в самом конце 19 века, однако о теории линейных неравенств стало возможным говорить лишь в конце двадцатых годов 20 века, когда уже накопилось достаточное количество связанных с ними результатов. Сейчас теория конечных систем линейных неравенств может рассматриваться как ветвь линейной алгебры, выросшая из неё при дополнительном требовании упорядоченности поля коэффициентов. Линейные неравенства имеют особо важное значение для экономистов, т.к именно при помощи линейных неравенств можно смоделировать производственные процессы и найти наиболее выгодные планы производства, транспортировки, размещения ресурсов и т. д. В данной работе будут изложены основные методы решения линейных неравенств, применительно к конкретным задачам. Графический метод Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.
     В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.
     Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:
    
    
    
     1. На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде: Так как и графики и область допустимых решении находятся в первой четверти. Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3). Как видно из иллюстрации многогранник ABCDE образует область допустимых решений. Если область допустимых решений не является замкнутой, то либо max(f)=+ ?, либо min(f)= -?. 2. Теперь можно перейти к непосредственному нахождению максимума функции f. Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что f(C)=f(4;1)=19 - максимум функции. Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много. В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа a от -? до +? прямые f=a смещаются по вектору нормали1. Если при таком перемещении линии уровня существует некоторая точка X - первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X)- минимум f на множестве ABCDE. Если X- последняя точка пересечения линии уровня и множества ABCDE то f(X)- максимум на множестве допустимых решений. Если при а>-? прямая f=a пересекает множество допустимых решений, то min(f)= -?. ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Нестандартные методы решения уравнений и неравенств
Просмотров:220
Описание: СОДЕРЖАНИЕ ВВЕДЕНИЕ 1 ИСТОРИЧЕСКАЯ СПРАВКА 2 РЕШЕНИЕ ЗАДАЧ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ ФУНКЦИИ     2.1 Использование монотонности функции 2.2 Использование ограниченности функции 2.3 Использование перио

Название:Неравенства
Просмотров:225
Описание: Содержание   1)  Основное понятие неравенства 2)  Основные свойства числовых неравенств. Неравенства содержащие переменную. 3)  Графическое решение неравенств второй степени 4)  Системы нера

Название:Доказательства неравенств с помощью одномонотонных последовательностей
Просмотров:224
Описание: Муниципальное общеобразовательное учреждение Средняя общеобразовательная школа № 4 Секция: математика ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА по темеДоказательства неравенств с помощью одномонотонных последо

Название:Повышение коэффициента вытеснения нефти из пористой среды
Просмотров:102
Описание:   Кафедра: Разработки и эксплуатации нефтяных и газовых месторождений Реферат по курсу «Основы численного моделирования» Повышение коэффициента вытеснения нефти из пористой среды

Название:Методика формирования умений решать тригонометрические уравнения и неравенства в курсе алгебры и начал анализа
Просмотров:219
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Поморский государственный университет имени М.В.Ломоносова»   Кафедра мето

 
     

Вечно с вами © MaterStudiorum.ru