Содержание
1) Основное понятие неравенства
2) Основные свойства числовых неравенств. Неравенства содержащие переменную.
3) Графическое решение неравенств второй степени
4) Системы неравенств. Неравенства и системы неравенств с двумя переменными.
5) Решение рациональных неравенств методом интервалов
6) Решение неравенств, содержащих переменную под знаком модуля
1. Основное понятие неравенства
Неравенство [inequality] — соотношение между числами (или любыми математическими выражениями, способными принимать численное значение), указывающее, какое из них больше или меньше другого. Над этими выражениями можно по определенным правилам производить следующие действия: сложение, вычитание, умножение и деление (причем при умножении или делении Н. на отрицательное число смысл его меняется на противоположный). Одно из основных понятий линейного программирования — линейные неравенства вида
a1x1+ a2x2 +... + anxn * b,
где a1,..., an, b — постоянные и знак * — один из знаков неравенства, напр. ≥, <, ≤.
В матричной алгебре знак ≥ означает что все элементы матрицы, расположенной слева, не меньше (а хотя бы часть из них больше) соответствующих элементов матрицы, расположенной справа. В отличие от этого знак ≤ означает, что все элементы левой матрицы не меньше соответствующих элементов правой матрицы; в частности, все соответствующие элементы могут быть попарно равны. (Иногда применяются и другие обозначения.)
Классификация неравенств
Неравенства, содержащие неизвестные величины, подразделяются на:[1]
· алгебраические
· трансцендентные
Алгебраические неравенства подразделяются на неравенства первой, второй, и т. д. степени.
Пример:
Неравенство - алгебраическое, второй степени.
Неравенство - трансцендентное.
2. Основные свойства числовых неравенств. Неравенства содержащие переменную
1) Если a>b , b<a;
2) Если a>b b>c a>c;
3) Если a>b a+c>b+c;
4) Если a+b>c a> c-b;
5) Если обе части верного неравенства умножить на одно и то же положительное число, то получится верное неравенство;
6) Если обе части верного неравенства умножить на одно и то же число и изменить знак на противоположный, то получится верное неравенство;
7) Множество всех х, при которых имеют смысл выражения f(x) и g(x), называется областью определения неравенства f(x) >g(x);
8) Два неравенства, содержащие одну и ту же переменную, называются равносильными, если они имеют общее множество решений (множество решений этих неравенств совпадают);
9) Если к обеим частям неравенства прибавить(или вычесть) любую функцию J(x). область определения которой содержит область определения неравенств, то получится новое неравенств, равносильное данному;
10) Если обе части неравенства f(x) >g(x) умножить (или разделить) на любую функцию J(x), определенную для всех значений переменной х из области определения данного неравенства, сохраняющую постоянный знак и отличную от нуля, то при J(x)>0 получится неравенство, равносильное данном, а при J(x)<0 равносильным данному является неравенство противоположного знака.
Неравенства с одной переменной. Пусть дано неравенство f(x) >g(x). ............