MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Множественная регрессия и корреляция

Название:Множественная регрессия и корреляция
Просмотров:261
Раздел:Математика
Ссылка:Скачать(53 KB)
Описание: Справочный материал к теме: Множественная регрессия – уравнение связи с несколькими независимыми переменными: где  - зависимая переменная (результативный п

Часть полного текста документа:

Справочный материал к теме:

Множественная регрессия – уравнение связи с несколькими независимыми переменными:

где  - зависимая переменная (результативный признак);

 - независимые переменные (факторы).

Для построения уравнения множественной регрессии чаще используются следующие функции:

 линейная –  

 степенная –

 экспонента –  

 гипербола - .

Можно использовать и другие функции, приводимые к линейному виду.

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:

Для ее решения может быть применен метод определителей:

,  ,…, ,

где  - определитель системы;

- частные определители; которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Другой вид уравнения множественной регрессии – уравнение регрессии в стандартизированном масштабе:

где  - стандартизированные переменные;

 - стандартизированные коэффициенты регрессии.

К уравнению множественной регрессии в стандартизированном масштабе применим МНК. Стандартизированные коэффициенты регрессии (- коэффициенты) определяются из следующей системы уравнений:

.

Связь коэффициентов множественной регрессии  со стандартизированными коэффициентами  описывается соотношением

Параметр  определяется как .

Средние коэффициенты эластичности для линейной регрессии рассчитываются по формуле

Для расчета частных коэффициентов эластичности применяется следующая формула:

.

Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции:

Значение индекса множественной корреляции лежит в пределах от 0 до 1 и должно быть больше или равно максимальному парному индексу корреляции:

 

Индекс множественной корреляции для уравнения в стандартизированном масштабе можно записать в виде

При линейной зависимости коэффициент множественной корреляции можно определить через матрицу парных коэффициентов корреляции:

 ---- определитель матрицы парных коэффициентов корреляции;

 ------ определитель матрицы межфакторной корреляции.

Частные коэффициенты (или индексы) корреляции, измеряющие влияние на y фактора  при неизменном уровне других факторов, можно определить по формуле:

или по рекуррентной формуле:

.

Частные коэффициенты корреляции изменяются в пределах от –1 до 1.

Качество построенной модели в целом оценивает коэффициент (индекс) детерминации. Коэффициент множественной детерминации рассчитывается как квадрат индекса множественной корреляции:

Скорректированный индекс множественной детерминации содержит поправку на число степеней свободы и рассчитывается по формуле:

где n-число наблюдений;

m – число факторов.

Значимость уравнения множественной регрессии в целом оценивается с помощью F-критерия Фишера:

Частный F-критерий оценивает статистическую значимость присутствия каждого факторов в уравнении. В общем виде для фактора  частный F-критерий определится как

Оценка значимости коэффициентов чистой регрессии с помощью t-критерия Стьюдента сводится к вычислению значения

где  - средняя квадратичная ошибка коэффициента регрессии  она может быть определена по следующей формуле:

При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов, их тесной линейной связанности.

Считается, что две переменные явно коллинеарны, т. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Применение коэффициента повышенной амортизации 2 при использовании осовных средств в многосменном режиме
Просмотров:540
Описание: Кочетков Юрий Владимирович, генеральный директор «Бурмистр.ру» Норма Налогового кодекса, позволяющая налогоплательщику применять повышенный коэффициент амортизации в отношении основных средств, эксплуатирую

Название:К вопросу корреляции отложений аллювиальной и лессово-почвенной формации среднерусской возвышенности и долины Верхнего Дона
Просмотров:416
Описание: Т. Ф. Трегуб, Воронежский государственный университет В настоящее время состояние изученности отложений лессово-почвенной и аллювиальной формаций на основе палинологических исследований позволяет с большей де

Название:Генетико-статистический анализ комбинационной способности сортов и форм яровой мягкой пшеницы по коэффициенту хозяйственной эффективности фотосинтеза
Просмотров:823
Описание: КУРСОВАЯ РАБОТА по дисциплине «Генетика популяций и количественных признаков» на тему: «ГЕНЕТИКО-СТАТИСТИЧЕСКИЙ АНАЛИЗ КОМБИНАЦИОННОЙ СПОСОБНОСТИ СОРТОВ И ФОРМ ЯРОВОЙ МЯГКО

Название:Сплавы с особым коэффициентом линейного расширения
Просмотров:461
Описание: Министерство образования и науки, молодежи и спорта Украины Приазовский государственный технический университет Кафедра материаловедениядомашнее задание по дисциплине Специальные стали и сплавы на тем

Название:Расчет коэффициентов ликвидности и финансовой устойчивости на примере предприятия ЧУП "Комета"
Просмотров:417
Описание: Расчёт коэффициентов ликвидности и финансовой устойчивости на примере предприятия ЧУП «Комета» Деятельность Частного торгового унитарного предприятия «Комета» зарегистрирована решением Витебского облис

 
     

Вечно с вами © MaterStudiorum.ru