MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Інтегральні перетворення Лапласа

Название:Інтегральні перетворення Лапласа
Просмотров:158
Раздел:Математика
Ссылка:Скачать(117 KB)
Описание: Вступ В багатьох задачах математичного аналізу розглядаються випадки, в яких кожна точка одного простору ставиться у відповідність деякій точці іншого (або того ж самого) простору. Відповідність між двома то

Часть полного текста документа:

Вступ

В багатьох задачах математичного аналізу розглядаються випадки, в яких кожна точка одного простору ставиться у відповідність деякій точці іншого (або того ж самого) простору. Відповідність між двома точками встановлюється за допомогою перетворення або оператора. В задачу теорії операторів входить докладний опис і класифікація різноманітних видів перетворень і їх властивостей, а також розробка символічних методів, що дозволяють мінімалізувати і спростити обчислення. Застосування операційного метода можна порівняти з логарифмуванням, коли 1) від чисел переходять до логарифмів, 2) над логарифмами проводять дії, що відповідають діям над числами, при тому множенню чисел відповідає більш проста операція складання логарифмів і т.д. 3) від найденого логарифма знов повертаються до числа. В операційному методі широко використовується перетворення Лапласа, яке перетворює певний клас функцій-оригіналів f(t) дійсної змінної t в функцію-зображення F(p) комплексної змінної p.


1. Означення перетворення Лапласа. Оригінал і зображення.

Нехай f [ t] -інтегрована на (0,Т) при довільному Т>0 функція, що дорівнює нулю при t>0 : f[t]=0 при t<0. Якщо ця функція при t>0 задовольняє оцінці:

  (1.1)

то можна розглянути інтеграл

(1.2)

Дійсно справджується оцінка

(1.3)

При виведенні (1.3) була застосована оцінка (1.1). З оцінки (1.3), зокрема, випливає, що . Функція  є аналітичною функцією комплексної змінної  в півплощині . Для того щоб це перевірити, знаходимо поки формально:

(1.4)


Як і при виведенні (1.3), знаходимо

(1.5)

Останнє означає що інтеграл рівномірно по Rep>a збігається і випливає що похідна існує при , і формула (1.4) справедлива при .

Інтеграл (1.2) називається перетворенням Лапласа функції  і позначається -. В цьому випадку функція  називається оригіналом, а функція  – зображенням.

Перетворення Лапласа можна зв’язати з перетворенням Фур’є. Дійсно з (1.2) маємо:

Де  (Перетворення Фур’є із знаком «-»)

2. Властивості перетворення Лапласа L

Лінійність.

Доведення:

В силу властивостей інтеграла:

Диференціювання зображення

Для m=1 властивість вже встановлено. Для довільного m властивість доводиться аналогічно.

Перетворення Лапласа похідних.

 

Для m=1 за допомогою інтегрування частинами знаходимо

При цьому ми врахували, що виконуються наступні оцінки:

При  и . Для довільного m властивість 2.3 встановлюється за індукцією

Зсув перетворення Лапласа.


Доведення властивості 2.4 очевидно.

Перетворення Лапласа і його подібності.

 

Зсув оригінала в перетворенні Лапласа.

Доведення. Позначимо

Очевидно, що g’[t]=f[t], g[+0]=0

Тому за допомогою інтегрування частинами знаходимо


При цьому ми врахували що g[+0]=0 в силу умови (1.1)

при , , .

при , , .

Звідси знаходимо

Перетворення Лапласа дробу f[t]/t.

Доведення. Позначив Ф[p]=£[f[t]\t][p] . Знайдемо

Останню рівність про інтегруємо по довільному шляху від р до довільної точки z=Rez=∞

 


Враховуючи, що в силу (1.3) Ф[]=0. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Уравнение Лапласа, решение задачи Дирихле в круге методом Фурье
Просмотров:424
Описание: Содержание Ведение 1.Оператор Лапласа 2.Уравнение Лапласа в двумерном пространстве 3.Уравнение Лапласа в случае пространственных переменных 4.Решение задачи Дирихле в круге методом Фурье Заключение

Название:Економічна функція держави в умовах сучасних ринкових перетворень
Просмотров:245
Описание: Економічна функція держави в умовах сучасних ринкових перетворень   Серед внутрішніх функцій української держави насамперед визначимо її економічну функцію. Цей напрям діяльності держави спрямований на

Название:Функція, її границя та неперервність
Просмотров:246
Описание: ФУНКЦІЯ, ЇЇ ГРАНИЦЯ ТА НЕПЕРЕРВНІСТЬ 1. Функція багатьох змінних. Означення та символіка Нехай задано множину  упорядкованих пар чисел. Якщо кожній парі чисел за певним за

Название:Діяльність органів виконавчої влади, функція прийняття рішень
Просмотров:154
Описание: ЗМІСТ   ВСТУП РОЗДІЛ 1. Функціональні характеристики і технологія прийняття управлінських рішень 1.1 Процес підготовки і прийняття управлінських рішень 1.2 Методи обґрунтування і прийняття управлінських

Название:Розрахунок приймача АМ-сигналів на інтегральних мікросхемах
Просмотров:233
Описание: Укрзалізниця Київський електромеханічний технікум залізничного транспорту ім. М. Островського Курсова робота з теми: РОЗРАХУНОК ПРИЙМАЧА АМ-СИГНАЛІВ НА ІНТЕГРАЛЬНИХ МІКРОСХЕМАХ

 
     

Вечно с вами © MaterStudiorum.ru