Часть полного текста документа:Определение релаксационных констант в модифицированных полимерных материалах методом линейной регрессии В.А. Федорук, В.И. Суриков, Т.Г. Сичкарь, Н.И. Шут, Омский государственный технический университет, кафедра физики Важнейшими характеристиками релаксационных процессов в полимерных материалах являются энергия активации U, температура релаксационного перехода Tm , предэкспоненциальный множитель B в уравнении Больцмана-Аррениуса. В настоящее время существуют экспериментальные методы определения релаксационных констант [1,2]. Наибольшее распространение получил подход, разработанный Г.М.Бартеневым с сотрудниками [2]. Несмотря на очевидные достоинства, он имеет один существенный недостаток - требует большого объема экспериментальных исследований. Применение современной вычислительной техники позволяет в ряде случаев упростить процедуру определения релаксационных констант. Особенно этот метод эффективен, с нашей точки зрения, при изучении релаксационных процессов в модифицированных полимерных материалах, когда известны релаксационные константы полимера-связующего. Суть подхода в определении U, Tm и B с помощью ЭВМ заключается в аппроксимации анализируемого релаксационного максимума на температурной зависимости тангенса угла механических потерь максвелловским максимумом с помощью метода линейной регрессии в сочетании с методом регуляризации (ЛРР) [3]. Максимум Максвелла без учета фона в координатах может быть описан следующим выражением: где U - энергия активации; k - постоянная Больцмана; - максимальное значение . Соотношение (1) было использовано для аппроксимации экспериментальной зависимости . С этой целью искомые параметры Пi представляли в виде , где Пi0 - нулевое приближение, . Разлагая в ряд Тейлора по малой величине , можно получить уравнение вида где A - матрица с тремя столбцами и M строками ( M - число экспериментальных точек); x - вектор-столбец с тремя неизвестными параметрами Пi ; C - вектор-столбец с M элементами, представляющими собой разности экспериментальных и рассчитанных значений . В рассматриваемой задаче неизвестными параметрами являлись U, , Tm. Переопределенную систему (2) решали путем умножения на транспонированную матрицу AT и Таблица 1 Релаксационные константы ЭП УП-643, пластифицированного дибутилфталатом Содержание ДБФ, K эвм кДж/моль кДж/моль Коэффициент уширения r 0 420 140 157 1,1 5 411 155 154 1 10 401 118 150 1,3 добавлением в левую часть единичной матрицы E с параметром регуляризации [3]: Составленные подходящим образом алгоритмы и программы позволяют реализовать метод ЛРР на ПЭВМ. Вышеуказанный метод использовали для расчета релаксационных констант в эпоксидном полимере (ЭП) на основе эпоксиноволачной смолы УП-643, модифицированного жидким пластификатором-дибутилфталатом (ДБФ). Спектры внутреннего трения (тангенс угла механических потерь) определяли на торсионном маятнике в режиме вынужденных колебаний на частотах 20 - 90 Гц с погрешностью по . Скорость сканирования температуры - 2 град./мин. Из анализа спектров внутреннего трения следует, что введение пластификатора приводит к уменьшению температуры -перехода от 420 K (непластифицированный ЭП) до 401 K (ЭП с ДБФ). ............ |