Федеральное агентство по образованию
Пермский Государственный Технический Университет
Реферат:
«ПРОЕКТИРОВАНИЕ ТРАЕКТОРИЙ ПЕРЕМЕЩЕНИЯ РОБОТОВ»
ВВЕДЕНИЕ
Мы изучили, каким образом можно описать задачу робототехнического манипулирования при помощи однородных преобразований; теперь нужно рассмотреть методы проектирования траекторий перемещения робота.
Рис. 4.7.1. Робот, размещающий МОП-пластины. (С разрешения PRI.)
Нужно описать желаемые движения манипуляционных роботов либо в пространстве обобщенных координат, либо в трехмерном рабочем пространстве, либо в координатах схвата в зависимости от того, интересуют ли нас зависимости от времени положения, ориентации, линейной скорости, угловой скорости, линейного ускорения и углового ускорения (рис. 4.7.1).
С точки зрения интересов человека-оператора робототехническая система должна быть способна позаботиться о деталях траектории движения, как только введены преобразования, описывающие задачу. Например, оператор может просто ввести желаемое кинематическое положение схвата робота для манипулирования объектом и предоставить системе управления роботом планировать форму траектории перемещения и такие детали, как профили изменения скорости и ускорения. Это определенным образом связано с так называемым программированием на уровне задачи, которое будет рассмотрено и гл. 9. Мы же обратимся к вопросу о том, каким образом траектории перемещения роботов интерпретируются управляющей ЭВМ и каким образом управляющая ЭВМ в действительности строит такие траектории и выдает команды роботу на выполнение желаемых задач. Цифровой природой управляющей ЭВМ обусловлено то, что генерация траекторий осуществляется дискретным образом. Так, генерация каждой дискретной точки на траектории движения происходит за так называемое время просчета траектории. Точки могут генерироваться с частотой 10—300 Гц в зависимости от того, какая частота вычисления точек траектории может быть достигнута на управляющей ЭВМ. Задача состоит в том, чтобы переместить схват робота из начального кинематического положения Н(0) в заданное кинематическое положение H(t) за время t. Естественным представляется описать движение гораздо более детально, чем определить лишь начальную и конечную точки, с тем чтобы избежать столкновений с предметами, находящимися в рабочей области. Таким образом, определяются промежуточные точки, в которых должно быть найдено кинематическое положение схвата робота. Для более подробно описанных траекторий должны быть определены значения обобщенной скорости и обобщенного ускорения. Очевидно, чтобы получить изменяющееся во времени кинематическое положение схвата робота Н(t), необходимо прибегнуть к множеству изменяющихся во времени углов в сочленениях, или, иначе, к зависящему от времени вектору углов в сочленениях Q(t), такому, что
(4.7.1)
где (t) - не что иное, как зависящее от времени решение об- ратной задачи кинематики с начальным Н(0) и конечным Н(t) кинематическими положениями схвата робота.
Далее мы опишем множество способов, применяемых для планирования и генерации желаемых векторов углов в сочленениях манипулятора.
КУБИЧЕСКИЕ ЗАКОНЫ ИЗМЕНЕНИЯ УГЛОВ В СОЧЛЕНЕНИЯХ
Простейший и наиболее часто используемый способ определения закона изменения угла в сочленении i(t) - это определение начального и конечного значений i(t) и i(t), которые обычно принимают следующие значения:
i(0) = i0 (4.7.2)
i(tf) = if (4.7.3)
i(0) = 0 (4.7.4)
i(tf) = 0 (4.7.5)
где tf — конечный момент времени, а к схвату робота предъявляется требование, чтобы он находился в состоянии покоя в начальный момент времени t=0 и достигал состояния покоя в момент времени t = t.
Условиям (4.7.2) — (4.7.5) могут удовлетворить многочлены третьей степени от времени, т. е.
i(t)= i0 + a1it + a2it2 + a3it3, (4.7.6)
такие, что
if = i0 + a1itf + a2it2f + a3it3f, (4.7.7) 0 = a1i, (4.7.8)
0 = 2a2itf + 3a3itf, (4.7.9)
откуда a2i и a3i получаются равными
a2i = 3(if - i0 ) t -2f, (4.7.10)
a3i = 2(if - i0 ) t -3f. ............