Содержание
Введение
Интерполяция многочленами
Методы интерполяции Лагранжа и Ньютона
Сплайн-аппроксимация
Метод наименьших квадратов
Полиномы Чебышева
Практическое задание
Введение Допустим, задана функция y (x), это означает, что любому допустимому значению х сопоставлено значение у. Но иногда оказывается, что найти это значение очень трудно. Например, у (х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у (х) измеряется в дорогостоящем эксперименте. В этом случае можно вычислить небольшую таблицу значений функции, но прямое нахождение этой функции при большом числе значений аргумента будет практически невозможно. Функция у (х) может существовать в каких-нибудь физико-технических или математических расчётах, где её необходимо будет многократно вычислять. В этой ситуации удобно заменить функцию у (х) приближённой формулой, то есть подобрать некоторую функцию j (х), которая приближается в некотором смысле к у (х) и просто вычисляется. Затем при всех значениях аргумента полагать, что у (х)" j (х)
Основная часть классического численного анализа основывается на приближении многочленами, потому как с ними легче работать. Однако для большинства целей используются другие классы функций.
Выбрав значимые точки и класс приближающих функций, нам необходимо ещё выбрать одну определённую функцию из этого класса посредством какого-то критерия - некоторой меры приближения или "равенства". До того как начать вычисления, мы должны решить также, какую точность нам надо в ответе и какой критерий мы выбираем для измерения этой точности
Всё изложенное выше можно сформулировать в виде четырёх вопросов:
Какие значимые точки мы будем использовать?
Какой класс приближающих функций будет нами использован?
Какой критерий согласия-"равенства" мы применим?
Какая точность нам необходима?
Существуют три группы функций, которые широко применяемых в численном анализе. Первая группа включает в себя линейные комбинации функций 1, х, х 2, …, х n, что совпадает с классом всех многочленов степени n (или меньше). Второй класс - включает в себя функции cos a i x, sin a i x. Этот класс имеет непосредственное отношение к рядам Фурье и интегралу Фурье. Третья группа образована функциями e - az. Эти функции часто встречаются в реальных ситуациях, к ним, например, часто приводят задачи накопления и распада. Что касается критерия согласия или "равенства", то классическим критерием согласия является "точное совпадение в значимых - узловых точках". Этот критерий обладает преимуществами простоты теории и выполнения вычислений, но он также имеет неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении значений в значимых (узловых) точках). Другой достаточно хороший критерий - есть "наименьшие квадраты". Это означает, что сумма квадратов отклонений в узловых точках должна быть наименьшей возможной или, другими словами, приведена к минимуму. Этот критерий использует неточную информацию, чтобы получить наименьшее количество шума. Третий критерий напрямую связан с именем Чебышева. Основная идея его заключается в том, чтобы привести максимальное отклонение к минимуму. ............