Разностные схемы для уравнений параболического типа
1. Решение задачи Коши Рассмотрим задачу Коши для уравнения теплопроводности
, , , (3.5)
с условием на прямой t=0
, . (3.6)
Требуется найти функцию , которая при и удовлетворяла бы уравнению (3.5), а при выполняла бы условие (3.6).
Будем считать, что задача (3.5), (3.6) имеет в верхней полуплоскости единственное решение , непрерывное вместе со своими производными
, i=1, 2 и , k=1, 2, 3, 4.
Запишем задачу (3.5), (3.6) в виде . Для этого достаточно положить
Будем далее считать, что t изменяется в пределах . В рассматриваемом случае
,
Г − объединение прямых t=0 и t=T.
Выберем прямоугольную сетку и заменим область сеточной областью . К области отнесем совокупность узлов , где
, , ,
, , , .
Заменим задачу разностной схемой вида . Обозначим через точное значение решения задачи в узле , а через – соответствующее приближенное решение. Имеем
Для замены выражений и воспользуемся формулами численного дифференцирования. Имеем:
, (3.7)
, (3.8)
, (3.9)
(3.10)
Назовем некоторую совокупность узлов, привлекаемых для замены задачи в узле , разностной схемой , шаблоном. Наиболее употребительные шаблоны изображены на рис. 3:
Рис. 3. Явный и неявный шаблоны
Рассмотрим явный двухслойный шаблон. Для него
(3.11)
Здесь мы воспользовались формулами (3.7) и (3.10) и обозначили
.
Введем обозначение
(3.12)
Теперь на основании формул (3.11), (3.12) можно записать разностную схему для задачи :
, (3.13)
где разностный оператор определяется по правилу
Аналогично, если использовать неявный двухслойный шаблон, можно получить такую разностную схему:
, (3.14)
где
На основании формул (3.11) и (3.13) можно записать
,
где
Аналогично, используя (3.11), (3.10), (3.14), получим
,
.
Выясним порядок аппроксимации разностных схем (3.13) и (3.14). В качестве возьмем линейное множество всех пар ограниченных функций
.
Норму в определим правилом
Пусть , где r и s – некоторые положительные числа.
Предположим, что для и верны оценки
, .
Тогда легко получить
, (3.15)
. (3.16)
Для параболических уравнений, как мы увидим далее, в случае схемы (3.13) можно взять S=2, а в случае схемы (3.14) можно взять S=1.
Из формул (3.15), (3.16) следует, что разностные схемы (3.13), (3.14) аппроксимируют задачу с погрешностью порядка S относительно h.
Разностная схема (3.13) позволяет по значениям решения на нулевом слое, то есть по значениям вычислить значения на первом слое . Для этого достаточно в (3.13) положить n = 0 и произвести вычисления, носящие рекурсионный характер. Потом по значениям можно аналогично при n = 1 вычислить значения и т.д. В силу этого разностную схему (3.13) называют явной.
Разностная схема (3.14) такими свойствами не обладает. Действительно, если мы в (3.14) положим n = 0, то в левой части полученной формулы будет линейная комбинация из значений , в правой части будут значения известной функции и . Для вычисления значений на первом слое в этом случае необходимо решать бесконечную систему линейных уравнений. ............