MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Структура некоторых числовых множеств

Название:Структура некоторых числовых множеств
Просмотров:348
Раздел:Математика
Ссылка:Скачать(453 KB)
Описание: Дипломная работа По теме Структура некоторых числовых множеств Введение В 1870-х годах немецкий математик Георг Кантор (1845-1918) создал теорию множеств — исключительно м

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Дипломная работа

По теме

Структура некоторых числовых множеств


Введение

В 1870-х годах немецкий математик Георг Кантор (1845-1918) создал теорию множеств — исключительно мощное и важное математическое учение, оказавшее огромное влияние на развитие современной математики. Теория множеств не только явилась фундаментом целого ряда новых математических дисциплин, но и оказала глубокое влияние на понимание самого предмета математики. Помимо прочего в канторовской теории множеств впервые были развиты конструктивные подходы к анализу проблемы бесконечности, более двух тысяч лет являвшейся лишь предметом филологических упражнений философов.

Теория множеств изучает общие свойства множеств, преимущественно бесконечных. Понятие множества простейшее математическое понятие, оно не поддается определению, ибо определить понятие — значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество — это, пожалуй, самое широкое понятие математики и логики.

Однако Кантор попытался определить данное понятие так: «Под множеством, - разъяснял Георг Кантор, - я понимаю вообще всякое многое, которое можно мыслить как единое, то есть всякую совокупность определенных элементов, которая может быть связана в одно целое с помощью некоторого закона...» 1. Но эта концепция привела к парадоксам, в частности, к парадоксу Рассела, и данная теория стала называться наивной теорией множеств.

Парадокс Рассела — открытая в 1903 году Бертраном Расселом и позднее независимо переоткрытая Эрнестом Цермело теоретико-множественная антиномия, демонстрирующая противоречивость наивной теории множеств Г. Кантора. Антиномия Рассела формулируется следующим образом: Пусть K — множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K самого себя в качестве элемента? Если да, то, по определению K, оно не должно быть элементом K — противоречие. Если нет — то, по определению K, оно должно быть элементом множеств, включающихся в К — вновь противоречие.

После этого теория множеств была аксиоматизирована. На сегодняшний день множество определяется как модель, удовлетворяющая ряду аксиом (так называемая аксиоматика Цермело – Френкеля).

Множества могут состоять из самых различных элементов. Именно этим объясняется чрезвычайная широта теории множеств и ее приложимость к самым разным областям знания.

Для математики особо важную роль играют множества, составленные из математических объектов, в частности числовые множества, о которых и пойдет речь в данной работе.

При написании этой дипломной работы мы задавались целью - изучить исходные понятия и важнейшие теоремы теории множеств, а также на основании данного материала, решить ряд нестандартных задач по выявлению структуры некоторых числовых множеств.

Данная работа состоит из трех глав: «Мощности бесконечных множеств», «Точечные множества», «Решение некоторых задач».

В первой главе приводится краткое историческое описание становления теории множетсв, определяются основные понятия, такие как мощность, счетное множество, континуальное множество, с которыми нужно ознакомиться для дальнейшей работы. Устанавливаются связи между ними и доказываются основные теоремы о мощностях бесконечных множеств. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Пустые множества
Просмотров:619
Описание: Милюков А. М. «Доказательства эволюции» 2010 – новое платье короля После относительно продолжительного затишья в области эволюционистской критической мысли, начало 2010 года было ознаменовано появлением сетевог

Название:Понятие и формы множественности преступлений
Просмотров:400
Описание: План Введение 1.  Понятие и формы множественности преступлений 2.  Понятие и виды единого преступления 3.  Совокупность преступлений 4.  Рецидив преступлений 5.  Примеры практики по уголовным

Название:Множественность преступлений
Просмотров:464
Описание: Введение В работе правоохранительных органов нередко встречаются ситуации, когда в действиях одного и того же лица, привлекаемого к уголовной ответственности, обнаруживаются признаки двух и более составов

Название:Комплексный анализ методов теории нечетких множеств
Просмотров:384
Описание: РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ Новосибирский филиал Курсовая работа По дисциплине: «УПРАВЛЕНЧЕСКИЕ РЕШЕНИЯ» Комплексный анализ методов теории нече

Название:Структура некоторых числовых множеств
Просмотров:348
Описание: Дипломная работа По теме Структура некоторых числовых множеств Введение В 1870-х годах немецкий математик Георг Кантор (1845-1918) создал теорию множеств — исключительно м

 
     

Вечно с вами © MaterStudiorum.ru