Московский Государственный Авиационный Институт
( технический университет )
Филиал “Взлёт”
Курсовая работа по дисциплине "Теория вероятности и математическая статистика"
“Теория вероятности”
Выполнил студент группы ДР-2:
Архипов А.В.
Проверил преподаватель:
Егорова Т. П.
г. Ахтубинск 2004 г
Задание 1
Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы.
Формулировка теоремы Бернулли: “Частота появления события в серии опытов сходится по вероятности к вероятности данного события”.
p1 = 0.9
p2 = 0.8
p3 = 0.9
p4 = 0.8
p5 = 0.9
p6 = 0.9
Проверка теоремы с помощью программы:
Текст программы:
Program bernuli;
Uses CRT;
Var op,i,j,m,n:integer;
a,pp:real;
p:array[1..6] of real;
x:array[1..6] of byte;
Begin
ClrScr;
Randomize;
p[1]:=0.9; p[2]:=0.8; p[3]:=0.9; p[4]:=0.8; p[5]:=0.9; p[6]:=0.9;
for op:=1 to 20 do begin
n:=op*100; m:=0;
write(' n=',n:4);
for i:=1 to n do begin
for j:=1 to 6 do begin
x[j]:=0;
a:=random;
if a<p[j] then x[j]:=1;
end;
if ((((((x[1]=1) and (x[2]=1)) or (x[3]=1)) and (x[4]=1)) or (x[5]=1)) and (x[6]=1)) then m:=m+1
end;
pp:=m/n;
writeln(' M=',m:4,' P*=',pp:3:6);
End;
Readln;
end.
Результаты работы программы:
Опытов: Мсходы: Вер-ть:
n= 100 M= 89 P*=0.89
n= 200 M= 173 P*=0.86
n= 300 M= 263 P*=0.88
n= 400 M= 360 P*=0.90
n= 500 M= 434 P*=0.87
n= 600 M= 530 P*=0.88
n= 700 M= 612 P*=0.87
n= 800 M= 704 P*=0.88
n= 900 M= 784 P*=0.87
n=1000 M= 865 P*=0.86
n=1100 M= 985 P*=0.90
n=1200 M=1062 P*=0.89
n=1300 M=1165 P*=0.90
n=1400 M=1238 P*=0.88
n=1500 M=1330 P*=0.89
n=1600 M=1418 P*=0.89
n=1700 M=1471 P*=0.87
n=1800 M=1581 P*=0.88
n=1900 M=1670 P*=0.88
n=2000 M=1768 P*=0.88
Вер. в опыте: p= 0.88
Проверка вручную:
Первый способ:
Второй способ:
Вывод: Теорема Бернулли верна.
Задание 2
Методом кусочной аппроксимации смоделировать случайную величину, имеющую закон распределения Коши, заполнить массив из 300 точек.
Теория:
Метод кусочной аппроксимации заключается в том, что для формирования одного случайного числа из последовательности с заданным законом распределения необходимо дважды использовать датчик случайных чисел. Процедура получения случайного числа yi сводиться к:
1. Случайный выбор интервала (определение значения aj)
2. Случайный выбор «b» из этого интервала
3. Формирование случайного числа в соответствии с формулой
При выборе интервала на первом шаге процедуры должна учитываться плотность распределения. С этой целью ее кусочно-линейно аппроксимируют отрезками прямых, параллельных оси абсцисс (рис.1.)
Рис.1. Кусочно-линейно аппроксимированный график плотности распределения по закону Коши.
Количество интервалов разбиения области определения случайной величины обычно выбирается достаточно большим (именно поэтому в данной Курсовой работе было использовано разбиение на 400 интервалов).
Решение:
Построим график плотности распределения по закону Коши ():
Рис.2. График распределения Коши.
Необходимо разбить интервал от –20 до 20 на n подинтервалов (в данном случае n=40) и вычислить вероятность попадания на каждый из этих подинтервалов. После этого составить массив [a1,aj], так чтобы a1=0, a , случайно сгенерировать значение числа «b» из промежутка от 0 до 1, найти номер интервала в который она попадет и второй раз используя датчик случайных чисел сгенерировать случайную добавку «b». ............