Часть полного текста документа:Закон всемирного тяготения Этот главный для астрономии закон выведен И.Ньютоном в 1687 г. опытным путем (и, насколько мне известно, до сих пор не подтвержден теоретически). Закон утверждает, что два точечных тела с массами m1 и m2 притягивают друг друга с силой F = G*m1*m2/r2 (1) где r - расстояние между телами, а G - гравитационная постоянная. Ускорение, которое испытывает тело m2, находящееся на расстоянии r от данного тела m1, равно: a2 = F/m2 = G*m1/r2 (2) Закон справедлив и для протяженных тел со сферически-симметричным распределением массы, при этом r - расстояние между центрами симметрии тел. Для несферических тел закон соблюдается приближенно, причем тем точнее, чем больше расстояние между телами (между их центрами масс) по отношению к размерам тел. Все это всем известно еще со школы, и, казалось бы, без математических выкладок добавить больше нечего. Однако это не так. Согласно (1), сила притяжения пропорциональна массам и обратно пропорциональна квадрату расстояния. Но масса пропорциональна кубу линейного размера тела. Это означает, что если размеры тел и расстояния между ними (при сохранении их плотностей) пропорционально увеличить, например, в 10 раз, то их массы возрастут в 1000 раз, а квадрат расстояния - только в 100, поэтому сила притяжения увеличится в 10 раз! То есть при увеличении масштаба масса растет на порядок быстрее, чем квадрат расстояния! Из-за ничтожного значения гравитационной постоянной силы притяжения между отдельными предметами на поверхности Земли крайне малы по сравнению с силой притяжения самой Земли, но уже в межпланетных масштабах (сотни миллионов километров) увеличение масс компенсирует G и гравитация становится главной силой. При уменьшении масштабов проявляется обратный эффект, хоть это уже из биологии. Если, к примеру, уменьшить человека до размеров муравья, т.е. примерно в 100 раз, то его масса уменьшится в 1 000 000 раз. А поскольку сила мышц примерно пропорциональна их поперечному сечению, т.е. квадрату линейного размера, то она уменьшится только в 10 000 раз, т.е. будет 100-кратный выигрыш в силе! Нетрудно догадаться, что фактически насекомые обитают в условиях сильно пониженной по сравнению с более крупными животными гравитации. Поэтому вопрос о том, какой вес смог бы поднять муравей, если бы был размером со слона, просто не имеет смысла. Строение тела насекомых и вообще всех мелких животных оптимально именно для пониженного тяготения, и ноги у муравья просто не выдержат веса тела, не говоря уже о каком-то дополнительном грузе. Так сила тяжести накладывает ограничения на размеры наземных животных, и самые крупные из них (например, динозавры), по-видимому, существенную часть времени проводили в воде. Летательные способности в животном мире также ограничены массой тела. Не только сила мышц, но и площадь крыльев растет пропорционально квадрату линейных размеров, т.е. для при некоторой предельной массе тела полеты становятся невозможными. Эта критическая масса составляет примерно 15-20 кг, что соответствует весу самых тяжелых из земных птиц. Поэтому очень сомнительно, что древние гиганские ящеры действительно могли летать; скорее всего, их крылья позволяли им только планировать с дерева на дерево. ............ |