Идентификация объекта управления
В современных сложных объектах, как правило, выходной сигнал объекта зависит не от одного входного сигнала, как в случае с кривой разгона, а от нескольких входных сигналов, т.е. объект управления имеет сложное переплетение взаимосвязей входных и выходных сигналов.
Рис. 1. Схема объекта, состоящего из нескольких взаимосвязанных входных-выходных сигналов
Для идентификации таких сложных объектов используется метод регрессионного анализа с проведением активного эксперимента на базе теории математического планирования эксперимента.
Назначение этой теории – значительно сократить количество экспериментальных опытов и упростить расчеты, необходимые для получения уравнения взаимосвязи выходного сигнала с несколькими входными сигналами – уравнения регрессии.
Сокращение числа необходимых экспериментов в теории математического планирования эксперимента достигается за счет одновременного изменения всех входных сигналов (факторов), а упрощение расчетов получается за счет того, что изменение входных сигналов (факторов) нормируется, т.е. величины . Пусть – зависит от 2-х входных факторов.
Рис. 2. Схема исследования объекта методом регрессионного анализа для двух входных сигналов (факторов)
Точка О – номинальный режим работы объекта. Нормализация происходит за счет того, что начало координат переносится в точку О на .
Рис. 3. Схема центрального плана полного факторного эксперимента для двух входных сигналов (факторов)
Здесь (рис. 3) изображен план проведения опытов для изучения зависимости . Число опытов равно 4=22 – полный факторный эксперимент; Для k входных факторов число опытов в факторном эксперименте: N=2k. При k=3 N=8; k=4, N=16 и т.д.
На приведенном выше рис. 3. изображен центральный (точка О – в центре) ортогональный полный факторный план эксперимента для 2-х входных факторов.
Таблица 1. Полный факторный эксперимент для k=2.
№ опыта
1 +1 +1
2 -1 +1
3 -1 -1
4 +1 -1
Свойство плана, когда, называется ортогональностью плана.
Таблица 2. Полный факторный эксперимент для k=3.
№ опыта
1 +1 +1 +1
2 -1 +1 +1
3 -1 -1 +1
4 +1 -1 +1
5 +1 +1 -1
6 -1 +1 -1
7 -1 -1 -1
8 +1 -1 -1
В полном факторном плане экспериментов число опытов резко возрастает в зависимости от числа входных факторов: k=4 N=16; k=5, N=32; k=6, N=64 опыта. Поэтому для сокращения числа опытов с минимальной потерей информации применяются сокращенные планы – дробные реплики. Если планы содержат половину опытов полного факторного эксперимента, то такой план носит название полуреплики.
Таблица 3. Пример полуреплики для k=4 (ПФЭ=16)
№ опыта
1 +1 +1 +1 +1 2 +1 -1 +1 -1 3 -1 +1 +1 -1 4 -1 -1 +1 +1 5 +1 +1 -1 -1 6 +1 -1 -1 +1 7 -1 +1 -1 +1 8 -1 -1 -1 -1
Используют также ¼ реплики от полного факторного эксперимента.
Уравнение взаимосвязи входного и выходного сигналов – уравнение регрессии – записывается в виде алгебраического полинома 1-ой и 2-ой степени в следующем виде:
1-ой степени:
xвых = b0 +b1x1+b2x2;
с учетом взаимодействия входных факторов для 2-х входных факторов x1 и x2:
xвых = b0 + b1x1 + b2x2 + b12x1 x2 .
Полином второй степени – уравнение регрессии:
Естественно, это уравнение более точно описывает взаимосвязь xвых – функции отклика – с входными факторами (сигналами) объекта.
Задача идентификации объекта управления (ОУ) методом регрессивного анализа сводится к выбору порядка математической модели – уравнения регрессии – и определению коэффициентов b0, b1, b2, b12 и т.д. ............