Часть полного текста документа:История математики: Классическая Греция С точки зрения XX в. родоначальниками математики явились греки классического периода (VI-IV вв. до н.э.). Математика, существовавшая в более ранний период, была набором эмпирических заключений. Греческая система счисления была основана на использовании букв алфавита. Дедуктивный характер греческой математики полностью сформировался ко времени Платона и Аристотеля. Изобретение дедуктивной математики принято приписывать Фалесу Милетскому (ок. 640-546 гг. до н.э.), который, как и многие древнегреческие математики классического периода, был также философом. Другим великим греком, с чьим именем связывают развитие математики, был Пифагор (ок. 585-500 гг. до н.э.). Пифагор основал движение, расцвет которого приходится на период ок. 550-300 гг. до н.э. Пифагорийцы создали чистую математику в форме теории чисел и геометрии. Целые числа они представляли в виде конфигураций из точек или камешков, классифицируя эти числа в соответствии с формой возникающих фигур ("фигурные числа"). Слово "калькуляция" (расчет, вычисление) берет начало от греческого слова, означающего "камешек".Для пифагорийцев любое число представляло собой нечто большее, чем количественную величину. Например, число 2 согласно их воззрению означало различие и потому отождествлялось с мнением. Четверка представляла справедливость, так как это первое число, равное произведению двух одинаковых множителей. Древние греки решали уравнения с неизвестными посредством геометрических построений. Были разработаны специальные построения для выполнения сложения, вычитания, умножения и деления отрезков, извлечения квадратных корней из длин отрезков. Ныне этот метод называется геометрической алгеброй. Геометрия стала основой почти всей строгой математики, по крайней мере, до 1600 г.Именно пифагорийцам мы во многом обязаны той математикой, которая затем была систематизированно изложена и доказана в "Началах" Евклида. Заметное место в истории математики занимает Аристотель, ученик Платона. Аристотель заложил основы науки логики и высказал ряд идей относительно определений, аксиом, бесконечности и возможности геометрических построений. Величайшим из греческих математиков классического периода, уступавшим по значимости полученных результатов только Архимеду, был Евдокс (ок. 408-355гг. до н.э.). Именно он ввел понятие величины для таких объектов, как отрезки прямых и углы. Около 300 г. до н.э. результаты многих греческих математиков были сведены в единое целое Евклидом, написавшим математический шедевр "Начала". Из немногих проницательно отобранных аксиом Евклид вывел около 500 теорем, охвативших все наиболее важные результаты классического периода. Для математиков текст "Начал" Евклида долгое время служил образцом строгости, пока в XIX в. не обнаружилось, что в нем имеются серьезные недостатки, такие как неосознанное использование несформулированных в явном виде допущений. Предложенный Аполлонием (ок. 262-200гг. до н.э.) анализ конических сечений - окружности, эллипса, параболы и гиперболы - явился кульминацией развития греческой геометрии. Аполлоний также стал основателем количественной математической астрономии. Александрийская математика возникла в результате слияния классической греческой математики с математикой Вавилонии и Египта. ............ |