MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Основные понятия математического анализа

Название:Основные понятия математического анализа
Просмотров:145
Раздел:Математика
Ссылка:Скачать(89 KB)
Описание: Содержание Двойные интегралы Определение определенного интеграла Правило вычисления двойного интеграла. Вычисление объемов тел с помощью двойного интеграла Вычисление площадей поверхностей фигур

Университетская электронная библиотека.
www.infoliolib.info

Часть полного текста документа:

Содержание

Двойные интегралы

Определение определенного интеграла

Правило вычисления двойного интеграла.

Вычисление объемов тел с помощью двойного интеграла

Вычисление площадей поверхностей фигур с помощью двойного интеграла.

Тройные интегралы

Вычисление объемов тел с помощью тройного интеграла.

Несобственные интегралы.

Дифференциальные уравнения.

1. Дифференциальные уравнения первого порядка с разделяющимися переменными

2. Однородные дифференциальные уравнения первого порядка

3. Линейные дифференциальные уравнения

4. Уравнения Бернулли

Дифференциальные уравнения второго порядка.

Три случая понижения порядка.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Комплексные числа

Геометрическое изображение комплексных чисел

Действия над комплексными числами.

Произведение.

Частное.

Возведение в степень.

Извлечение корня

Ряды.

Числовые ряды.

Свойства числовых рядов.

Знакоположительные ряды

Признаки сходимости и расходимости знакоположительных рядов.

Знакопеременные и знакочередующиеся ряды.


ДВОЙНЫЕ ИНТЕГРАЛЫ

 

Определение определенного интеграла

- интегральная сумма.

 

Геометрический смысл ОИ: равен площади криволинейной трапеции.

Аналогично ОИ выводится и двойной интеграл.

Пусть задана функция двух переменных z=f(x,y), которая определена в замкнутой области S плоскости ХОУ.

Интегральной суммой для этой функции называется сумма

Она распространяется на те значения i и к, для которых точки (xi,yk) принадлежат области S.


Двойной интеграл от функции z=f(x,y), определенной в замкнутой области S плоскости ХОУ, называется предел соответствующей интегральной суммы.

 

Правило вычисления двойного интеграла

Двойной интеграл вычисляется через повторные или двукратные интегралы. Различаются два основных вида областей интегрирования.


1. (Рис.1) Область интегрирования S ограничена прямыми х=а, х=в и кривыми

.

Для такой области двойной интеграл вычисляется через повторный по формуле:

Сначала вычисляется внутренний интеграл:

При вычислении внутреннего интеграла ‘у’ считается переменной, а ‘х’-постоянной.

2. (Рис.2) Область интегрирования S ограничена прямыми у=С, у=d и кривыми

.

Для такой области двойной интеграл вычисляется через повторный по формуле:

Сначала вычисляется внутренний интеграл, затем внешний.

При вычислении внутреннего интеграла ‘х’ считается переменной, а ‘у’-постоянной.

3. Если область интегрирования не относится ни к 1 ни ко второму случаю, то разбиваем ее на части таким образом, чтобы каждая из частей относилась к одному из этих двух видов.

 

Вычисление объемов тел с помощью двойного интеграла

Объем тела, ограниченного сверху поверхностью z=f(x,y), снизу- плоскостью z=0 (плоскость ХОУ) и с боков- цилиндрической поверхностью, вырезающей на плоскости ХОУ область S, вычисляется по формуле:


Вычисление площадей поверхностей фигур с помощью двойного интеграла

Если гладкая поверхность задана уравнением z=f(x,y), то площадь поверхности (Sпов.), имеющей своей проекцией на плоскость ХОУ область S, находится по формуле:

- площадь поверхности.

 


ТРОЙНЫЕ ИНТЕГРАЛЫ

Определяется аналогично двойному интегралу.

Тройной интеграл от функции U=f(x,y,z), распространенным на область V, называется предел соответствующей трехкратной суммы.

Вычисление тройного интеграла сводится к последовательному вычислению обыкновенных (однократных) нтегралов.

 

Вычисление объемов тел с помощью тройного интеграла

Объем тела вычисляется по формуле:


НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Это интегралы: - с бесконечными пределами; - от неограниченной функции.

Первый вид

Несобственные интегралы с бесконечными пределами имеют вид:

; ;

Несобственные интегралы от функции в пределах от (а) до () определяются равенством.

1.; 2. ............





Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Интегральная атака против блочного симметричного шифра Crypton
Просмотров:266
Описание: ВВЕДЕНИЕ Стремительное развитие современных информационных технологий в Украине, начавшееся в конце XX века, не снижает своих темпов и в начале XXI века. Компьютерные технологии оказывают все большее влияние н

Название:Центральная Предельная Теорема и её приложения. Решение Определенного интеграла методом Монте-Карло
Просмотров:323
Описание: Введение. Центральная предельная теорема (ЦПТ) имеет огромное значение для применений теории вероятностей в естествознании и технике. Ее действие проявляется там, где наблюдаемый процесс подвержен влиянию боль

Название:Применение интегралов к решению прикладных задач
Просмотров:248
Описание: Министерство образования и науки Российской Федерации Министерство образования Московской области Московский Государственный Областной Педагогический Институт Физико-математический факультет. Курсо

Название:Кинетические уравнения Власова
Просмотров:357
Описание: Дипломная робота Пояснительная записка «Кинетические уравнения Власова» Студент группы Иванов И.И. Руководитель работы Пересечанский В.М. Заведующий кафедры "Мат

Название:Уравнения смешанного типа
Просмотров:324
Описание: Содержание Введение 1. Нелокальная граничная задача Ι рода 2. Нелокальная граничная задача II рода Литература уравнение спектральный нелокальный дифференциальный Введение В современной те

 
     

Вечно с вами © MaterStudiorum.ru