MaterStudiorum.ru - домашняя страничка студента.
Минимум рекламы - максимум информации.


Авиация и космонавтика
Административное право
Арбитражный процесс
Архитектура
Астрология
Астрономия
Банковское дело
Безопасность жизнедеятельности
Биографии
Биология
Биология и химия
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Военная кафедра
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Деньги и кредит
Естествознание
Журналистика
Зоология
Издательское дело и полиграфия
Инвестиции
Иностранный язык
Информатика
Информатика, программирование
Исторические личности
История
История техники
Кибернетика
Коммуникации и связь
Компьютерные науки
Косметология
Краткое содержание произведений
Криминалистика
Криминология
Криптология
Кулинария
Культура и искусство
Культурология
Литература и русский язык
Литература(зарубежная)
Логика
Логистика
Маркетинг
Математика
Медицина, здоровье
Медицинские науки
Международное публичное право
Международное частное право
Международные отношения
Менеджмент
Металлургия
Москвоведение
Музыка
Муниципальное право
Налоги, налогообложение
Наука и техника
Начертательная геометрия
Новейшая история, политология
Оккультизм и уфология
Остальные рефераты
Педагогика
Полиграфия
Политология
Право
Право, юриспруденция
Предпринимательство
Промышленность, производство
Психология
Психология, педагогика
Радиоэлектроника
Разное
Реклама
Религия и мифология
Риторика
Сексология
Социология
Статистика
Страхование
Строительные науки
Строительство
Схемотехника
Таможенная система
Теория государства и права
Теория организации
Теплотехника
Технология
Товароведение
Транспорт
Трудовое право
Туризм
Уголовное право и процесс
Управление
Управленческие науки
Физика
Физкультура и спорт
Философия
Финансовые науки
Финансы
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика
Юриспруденция
Языковедение
Языкознание, филология
    Начало -> Математика -> Вычисление определённых интегралов по правилу прямоугольников

Название:Вычисление определённых интегралов по правилу прямоугольников
Просмотров:91
Раздел:Математика
Ссылка:Скачать(76 KB)
Описание: Распространенными являются также случаи, когда подынтегральная функция задается графиком или таблицей экспериментально полученных значений. В таких ситуациях используют различные методы численного интегрирован

Часть полного текста документа:

Содержание. 1. Введение. Постановка задачи......................................2стр. 2. Вывод формулы.......................................................3стр. 3. Дополнительный член в формуле прямоугольников..........5стр. 4. Примеры.................................................................7стр. 5. Заключение..............................................................9стр. 6. Список литературы...................................................10стр. Постановка задачи.
    Задача вычисления интегралов возникает во многих областях прикладной математики. В большинстве случаев встречаются определённые интегралы от функций, первообразные которых не выражаются через элементарные функции. Кроме того, в приложениях приходится иметь дело с определёнными интегралами, сами подынтегральные функции не являются элементарными. Распространенными являются также случаи, когда подынтегральная функция задается графиком или таблицей экспериментально полученных значений. В таких ситуациях используют различные методы численного интегрирования, которые основаны на том, что интеграл представляется в виде предела интегральной суммы (суммы площадей), и позволяют определить эту сумму с приемлемой точностью. Пусть требуется вычислить интеграл при условии, что a и b конечны и f(x) является непрерывной функцией на всем интервале (a, b). Значение интеграла I представляет собой площадь, ограниченную кривой f(x),осью x и прямыми x=a, x=b. Вычисление I проводится путем разбиения интервала от a до b на множество меньших интервалов, приближенным нахождением площади каждой полоски, получающейся при таком разбиении, и дальнейшем суммировании площадей этих полосок. Вывод формулы прямоугольников.
    Прежде, чем перейти к формуле прямоугольников, сделаем следующее замечание: З а м е ч а н и е. Пусть функция f(x) непрерывна на сегменте [a, b], а - некоторые точки сегмента [a, b]. Тогда на этом сегменте найдётся точка такая, что среднее арифметическое .
    В самом деле, обозначим через m и M точные грани функции f(x) на сегменте [a, b]. Тогда для любого номера k справедливы неравенства . Просуммировав эти неравенства по всем номерам и поделив результат на n, получим
    Так как непрерывная функция принимает любое промежуточное значение, заключённое между m и M, то на сегменте [a, b] найдётся точка такая, что .
    Первые формулы для приближенного вычисления определённых интегралов проще всего получаются из геометрических соображений. Истолковывая определенный интеграл как площадь некоторой фигуры, ограниченной кривой , мы и ставим перед собой задачу об определении этой площади.
    
    Прежде всего, вторично используя эту мысль, которая привела к самому понятию об определенном интеграле, можно разбить всю фигуру (рис. 1) на полоски, скажем, одной и той же ширины , а затем каждую полоску приближенно заменить прямоугольником, за высоту которого принята какая-либо из ее ординат. Это приводит нас к формуле (1) где , а R - дополнительный член. Здесь искомая площадь криволинейной фигуры заменяется площадью некоторой состоящей из прямоугольников ступенчатой фигуры (или - если угодно - определенный интеграл заменяется интегральной суммой). ............




Нет комментариев.



Оставить комментарий:

Ваше Имя:
Email:
Антибот:  
Ваш комментарий:  



Похожие работы:

Название:Интегральная атака против блочного симметричного шифра Crypton
Просмотров:264
Описание: ВВЕДЕНИЕ Стремительное развитие современных информационных технологий в Украине, начавшееся в конце XX века, не снижает своих темпов и в начале XXI века. Компьютерные технологии оказывают все большее влияние н

Название:Центральная Предельная Теорема и её приложения. Решение Определенного интеграла методом Монте-Карло
Просмотров:316
Описание: Введение. Центральная предельная теорема (ЦПТ) имеет огромное значение для применений теории вероятностей в естествознании и технике. Ее действие проявляется там, где наблюдаемый процесс подвержен влиянию боль

Название:Применение интегралов к решению прикладных задач
Просмотров:244
Описание: Министерство образования и науки Российской Федерации Министерство образования Московской области Московский Государственный Областной Педагогический Институт Физико-математический факультет. Курсо

Название:Теория эллиптических интегралов и эллиптических функций
Просмотров:206
Описание: Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Амурский государственный университет (ГОУ ВПО «АмГУ») Кафедра математического а

Название:Приложение интегрального и дифференциального исчисления к решению прикладных задач
Просмотров:379
Описание: Федеральное Агентство по образованию Государственное образовательное учреждение высшего профессионального образования Московский Государственный Институт Стали и Сплавов (технологический университ

 
     

Вечно с вами © MaterStudiorum.ru